Assessing temperature fingerprints for the Atlantic overturning in the past two millennia

Author(s):  
Reyhan Shirin Ermis ◽  
Paola Moffa-Sánchez ◽  
Alexandra Jahn ◽  
Kira Rehfeld

<p>The Atlantic Meridional Overturning Circulation (AMOC) is essential to maintain the temperate climates of Europe and North America. It redistributes heat from the tropics, and stores carbon in the deep ocean. Yet, its variability and evolution are largely unknown due to the lack of long-term direct circulation measurements. Previous studies suggest a connection between the variability of the AMOC strength and a temperature dipole in the North Atlantic. These results suggest a substantial decline in the strength of the overturning at the onset of the industrial era. </p><p>Here we compare temperature reconstructions from four sediment cores in the North Atlantic with model simulations of the Community Earth System Model (CESM1) as well as the Hadley Centre Coupled Model (HadCM3) over the Common Era. By examining the correlation between the surface temperatures in the North Atlantic and the strength of the overturning we test the robustness of previously used temperature fingerprints. Analysing variability in the surface and subsurface temperatures as well as the overturning strength in models we assess possible drivers of variability in ocean circulation. We compare the persistence times and the time scale dependent variability of the AMOC, the surface and ocean temperatures in the model with those in the temperature reconstructions. The sub-surface reconstructions match with the 200m ocean temperatures in persistence times but not with the AMOC in the models. The surface temperatures in the models show persistence times similar to those obtained for the AMOC. However, time scale dependent variabilities in the surface temperatures do not match those found the AMOC. Therefore, temperature fingerprints might not be a reliable basis to reconstruct the ocean overturning strength.</p><p>Due to the systematic comparison of two models on different time scales and an assessment of surface to sub-surface temperatures this study could provide new insights into the variability of Atlantic overturning on decadal time scales and beyond.</p>

2008 ◽  
Vol 38 (9) ◽  
pp. 1913-1930 ◽  
Author(s):  
Armin Köhl ◽  
Detlef Stammer

Abstract The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.


2020 ◽  
Vol 33 (9) ◽  
pp. 3845-3862 ◽  
Author(s):  
Sijia Zou ◽  
M. Susan Lozier ◽  
Xiaobiao Xu

AbstractThe latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.


2011 ◽  
Vol 41 (5) ◽  
pp. 1026-1034 ◽  
Author(s):  
Erik van Sebille ◽  
Lisa M. Beal ◽  
William E. Johns

Abstract The advective transit time of temperature–salinity anomalies from the Agulhas region to the regions of deep convection in the North Atlantic Ocean is an important time scale in climate, because it has been linked to variability in the Atlantic meridional overturning circulation. Studying this transit time scale is difficult, because most observational and high-resolution model data are too short for assessment of the global circulation on decadal to centennial time scales. Here, results are presented from a technique to obtain thousands of “supertrajectories” of any required length using a Monte Carlo simulation. These supertrajectories allow analysis of the circulation patterns and time scales based on Lagrangian data: in this case, observational surface drifter trajectories from the Global Drifter Program and Lagrangian data from the high-resolution OGCM for the Earth Simulator (OFES). The observational supertrajectories can only be used to study the two-dimensional (2D) surface flow, whereas the numerical supertrajectories can be used to study the full three-dimensional circulation. Results for the surface circulation indicate that the supertrajectories starting in the Agulhas Current and ending in the North Atlantic take at least 4 yr and most complete the journey in 30–40 yr. This time scale is, largely because of convergence and subduction in the subtropical gyres, longer than the 10–25 yr it takes the 3D numerical supertrajectories to complete the journey.


2021 ◽  
pp. 101998
Author(s):  
Kim A. Jakob ◽  
Jörg Pross ◽  
Jasmin M. Link ◽  
Patrick Blaser ◽  
Anna Hauge Braaten ◽  
...  

2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

<p>While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.</p><p>Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.</p><p> </p><p>References</p><p>Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228–232.</p><p>Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.</p><p>Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.</p><p>Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., Müller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.</p><p>Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.</p><p>Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.</p>


2007 ◽  
Vol 20 (19) ◽  
pp. 4940-4956 ◽  
Author(s):  
Uta Krebs ◽  
A. Timmermann

Abstract Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case. The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.


2021 ◽  
Author(s):  
Shenjie Zhou ◽  
Xiaoming Zhai ◽  
Ian Renfrew

<p>The ocean is forced by the atmosphere on a range of spatial and temporal scales. In ocean and climate models the resolution of the atmospheric forcing sets a limit on the scales that are represented. For typical climate models this means mesoscale (< 400 km) atmospheric forcing is absent. Previous studies have demonstrated that mesoscale forcing significantly affects key ocean circulation systems such as the North Atlantic Subpolar gyre and the Atlantic Meridional Overturning Circulation (AMOC). However, the approach of these studies has either been ad hoc or limited in resolution. Here we present ocean model simulations with and without realistic mesoscale atmospheric forcing that represents scales down to 10 km. We use a novel stochastic parameterization – based on a cellular automaton algorithm that is common in weather forecasting ensemble prediction systems<sup> </sup>– to represent spatially coherent weather systems over a range of scales, including down to the smallest resolvable by the ocean grid. The parameterization is calibrated spatially and temporally using marine wind observations. The addition of mesoscale atmospheric forcing leads to coherent patterns of change in the sea surface temperature and mixed-layer depth. It also leads to non-negligible changes in the volume transport in the North Atlantic subtropical gyre (STG) and subpolar gyre (SPG) and in the AMOC. A non-systematic basin-scale circulation response to the mesoscale wind perturbation emerges – an in-phase oscillation in northward heat transport across the gyre boundary, partly driven by the constantly enhanced STG, correspoding to an oscillatory behaviour in SPG and AMOC indices with a typical time scale of 5-year, revealing the importance of ocean dynamics in generating non-local ocean response to the stochastic mesoscale atmospheric forcing. Atmospheric convection-permitting regional climate simulations predict changes in the intensity and frequency of mesoscale weather systems this century, so representing these systems in coupled climate models could bring higher fidelity in future climate projections.</p>


2009 ◽  
Vol 22 (11) ◽  
pp. 3146-3155 ◽  
Author(s):  
David J. Brayshaw ◽  
Tim Woollings ◽  
Michael Vellinga

Abstract The tropospheric response to a forced shutdown of the North Atlantic Ocean’s meridional overturning circulation (MOC) is investigated in a coupled ocean–atmosphere GCM [the third climate configuration of the Met Office Unified Model (HadCM3)]. The strength of the boreal winter North Atlantic storm track is significantly increased and penetrates much farther into western Europe. The changes in the storm track are shown to be consistent with the changes in near-surface baroclinicity, which can be linked to changes in surface temperature gradients near regions of sea ice formation and in the open ocean. Changes in the SST of the tropical Atlantic are linked to a strengthening of the subtropical jet to the north, which, combined with the enhanced storm track, leads to a pronounced split in the jet structure over Europe. EOF analysis and stationary box indices methods are used to analyze changes to the North Atlantic Oscillation (NAO). There is no consistent signal of a change in the variability of the NAO, and while the changes in the mean flow project onto the positive NAO phase, they are significantly different from it. However, there is a clear eastward shift of the NAO pattern in the shutdown run, and this potentially has implications for ocean circulation and for the interpretation of proxy paleoclimate records.


Sign in / Sign up

Export Citation Format

Share Document