Comparison of local amplification factors for fast forecast coastal tsunami amplitude modeling based on the extended Green’s law

Author(s):  
Audrey Gailler ◽  
Daniel Giles

<p>In the framework of operational conditions, the real time coastal modeling in near field is challenging to obtain accurate and reliable tsunami warning products for flooding hazard. Two main approaches are usually developed to generate maps of forecasting inundation and impacts for planning community response. One produces coastal predictions with run-up computation by solving numerically high-resolution forecast models in real time, taking into account all local effects. However, these runs depend on the availability of fine bathymetry/topography grids along the shore and are too time consuming in near field and operational context. The second approach is based on early prediction tools of the coastal wave amplitude calculated from empirical laws or transfer functions derived from these laws. Such tools are suitable in near field context (almost ten times faster than the high-resolution runs), but all local effects are not well taken into account and the assessment of run-up is missing. The linear approximations of coastal tsunami heights are provided very quickly, with global and conservative estimates.</p><p>Within the French Tsunami Warning Center (CENALT), a forecast method based on coastal amplification laws is being implemented. This fast prediction tool provides a coastal tsunami height distribution, calculated from the numerical simulation of the deep ocean tsunami amplitude and using a transfer function derived from the Green’s law. The method involves maps of regionalized values of the empirical correction factor function of the coastal configuration, as a way to amplify or attenuate specific local geometries. Due to a lack of tsunami observations in the NEAM basin, coastal amplification parameters are defined by trial and error regarding high resolution nested grids simulations on the basis of a set of historical and synthetic sources. A method to optimize these local amplification factors by minimizing a cost function is being developed at UCD. Comparisons are shown for several French coastal sites.</p><p>The local tsunami wave heights modeled from the extended Green’s law present a good agreement with the time-consuming high resolution models. The linear approximation is obtained within 1 min and provides estimates within a factor of two in amplitude. Although the resonance effects in harbors and bays are not reproduced and the horizontal inundation calculation needs to be studied further, this method is well suited for an early first estimate of the coastal tsunami threat forecast.</p>

Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2019 ◽  
Author(s):  
Mauricio Fuentes ◽  
Sebastian Arriola ◽  
Sebastian Riquelme ◽  
Bertrand Delouis

Abstract. Chile host a great tsunamigenic potential along its coast, even with the large earthquakes occurred during the last decade, there is still a large amount of seismic energy to release. This permanent feature and the fact that the distance between the trench and the coast is just 100 km creates a difficult environment to do real time tsunami forecast. In Chile tsunami warnings are based on reports of the seismic events (hypocenter and magnitude) and a database of precomputed tsunami scenarios. However, because yet there is no answer to image the finite fault model within first minutes (before the first tsunami wave arrival), the precomputed scenarios consider uniform slip distributions. Here, we propose a scheme of processes to fill the gaps in-between blind zones due to waiting of demanding computational stages. The linear shallow water equations are solved to obtain a rapid estimation of the run-up distribution in the near field. Our results show that this linear method captures most of the complexity of the run-up heights in terms of shape and amplitude when compared with a fully non-linear tsunami code. Also, the run-up distribution is obtained in quasi real-time as soon as the seismic finite fault model is produced.


2020 ◽  
Author(s):  
Alberto Armigliato ◽  
Enrico Baglione ◽  
Stefano Tinti

<p><span>The study presented here takes the move from two well-known premises in tsunami science: the slip distribution on earthquake faults is heterogeneous and, in the case of tsunamigenic earthquakes, slip heterogeneity influences significantly the distribution of tsunami run-ups, especially for near-field areas. In the perspective of tsunami early warning, a crucial issue is to obtain a reasonable slip distribution within a time significantly shorter than the time taken by the waves to impact the nearest coastlines.</span></p><p><span>When an earthquake occurs, the only information that becomes available after a few minutes concerns the location of the earthquake and its magnitude. The first finite-fault models (FFM), based on seismic/geodetic data inversion, become available several hours or even days after the earthquake origin time. In the case of tsunamigenic earthquakes, tsunami waveforms useful for inversion become available after the tsunami passage at the recording stations. From the warning perspective, the time to get FFM representations is therefore too long for the near-source coastal areas. </span></p><p><span>We propose and describe a strategy whose goal is to derive in quasi-real-time a reasonable representation of the heterogeneous slip distribution on the fault responsible for a given tsunamigenic earthquake and to forecast the run-up distribution along the nearest coastlines. The strategy is illustrated in its application to the 16 September 2015 Illapel (Chile) tsunamigenic earthquake.</span></p><p><span>Realistically, the hypocentre location and the magnitude of the event can be available within two-three minutes. Knowing the hypocentre location permits us to place the fault plane in a definite geographical reference, while the knowledge of magnitude allows to derive the fault dimension and the slip model. A key point here is that we can derive slip models only knowing the magnitude and the location of the hypocenter. Among these models, we adopt simple 2D Gaussian Distributions (GDs), representing the main asperity, whose parameters can be deduced from properly defined regression laws. The 2D-GD simple representation takes a very short time to be derived. To complete the characterization of the tsunamigenic source, focal parameters can be safely derived from seismological databases, while the position of the fault represents a trickier point, as the fault plane is not necessarily centered at the earthquake hypocentre. To take this uncertainty into account, as a first approach three faults for each slip model are considered: 1) a plane centered on the hypocentre, 2) a fault shifted northwards, 3) a fault shifted southwards. </span></p><p><span>We run tsunami simulations for each adopted slip distribution and for each fault position, and compare the results against the available observed tide-gauge and run-up data in the near-field. We compare the performance of our 2D-GD models with respect to the finite-fault models retrieved from inversion procedures, published months after the 2015 event. We demonstrate that the 2D-GD method performs very satisfactorily in comparison to more refined, non-real-time published FFMs and hence permits to produce reliable real-time tsunami simulations very quickly and can be used as an experimental procedure in the frame of operational tsunami warning systems. </span></p>


2019 ◽  
Vol 19 (6) ◽  
pp. 1297-1304
Author(s):  
Mauricio Fuentes ◽  
Sebastian Arriola ◽  
Sebastian Riquelme ◽  
Bertrand Delouis

Abstract. Despite the occurrence of several large earthquakes during the last decade, Chile continues to have a great tsunamigenic potential. This arises as a consequence of the large amount of strain accumulated along a subduction zone that runs parallel to its long coast, and a distance from the trench to the coast of no more than 100 km. These conditions make it difficult to implement real-time tsunami forecasting. Chile issues local tsunami warnings based on preliminary estimations of the hypocenter location and magnitude of the seismic sources, combined with a database of pre-computed tsunami scenarios. Finite fault modeling, however, does not provide an estimation of the slip distribution before the first tsunami wave arrival, so all pre-computed tsunami scenarios assume a uniform slip distribution. We implemented a processing scheme that minimizes this time gap by assuming an elliptical slip distribution, thereby not having to wait for the more time-consuming finite fault model computations.We then solve the linear shallow water equations to obtain a rapid estimation of the run-up distribution in the near field. Our results show that, at a certain water depth, our linear method captures most of the complexity of the run-up heights in terms of shape and amplitude when compared with a fully nonlinear tsunami model. In addition, we can estimate the run-up distribution in quasi-real-time as soon as the results of seismic finite fault modeling become available.


Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Sign in / Sign up

Export Citation Format

Share Document