Dynamics of Pliocene East Antarctic Ice Sheet from depositional signatures of the Prydz Bay shelf and Trough Mouth Fan

Author(s):  
Xiaoxia Huang ◽  
German Leitchenkov ◽  
Anne Bernhardt ◽  
Graeme Eagles ◽  
Karsten Gohl ◽  
...  

<p>The Pliocene saw multiple advances and retreats of the ice-sheet margin in East Antarctica. Amery Ice Shelf (AIS) is the largest ice shelf in East Antarctica and also the largest single ice stream draining from the Antarctic Plateau. It buttresses the Lambert Glacier drainage system, and accounts for 14% of the outflow from the East Antarctic Ice Sheet (EAIS). However, evidence for the state of the EAIS during the Pliocene is sparse and difficult to interpret unequivocally. Marine geological-geophysical data collected from the continental shelf in Prydz Bay, Antarctica, including seismic-reflection data, bathymetry, core records from ODP drilling and gravity coring sites, reveal a complex paleo-subglacial drainage system linked to an offshore depositional regime dominated on a trough mouth fan (TMF). Detailed seismic stratigraphic and facies analysis reveals the glacial evolution of Prydz Bay shelf and its TMF, including several glacial expansions across the shelf indicated by erosional surfaces and stratal bodies with chaotic acoustic character. The geometry of seismic sequences suggests that the glaciers and their associated TMF developed after a major episode of shelf and slope erosion during the Pliocene-Pleistocene.</p><p> The shelf in Prydz Bay is dominated by a wide, south-north trending glacially-eroded trough (the Prydz Channel: -500~-1000 m depth) and shallower banks (-500~0 m depth). Well preserved grounding zone wedges areevidenced by prograding foreset deposits. Evidence for erosion of the wedges and/or lineations that extend across their upper surfaces indifferent water depths ranging from 200 m to 800 m imply their formation during multiple glacial stages or cycles.  Stacked erosional surfaces reveal major cross-shelf glacial expansions and the development of deep channel systems (up to -500 m depth) associated with extensive subglacial meltwater in Prydz Bay. These glacial related features provide good constraints for reconstructing the stability of the Pliocene EAIS.</p>

2009 ◽  
Vol 21 (3) ◽  
pp. 299-300 ◽  
Author(s):  
Sonja Berg ◽  
Bernd Wagner ◽  
Duanne A. White ◽  
Holger Cremer ◽  
Ole Bennike ◽  
...  

The evolution of the East Antarctic Ice Sheet (EAIS) during the Late Quaternary is poorly known, partly because some regions, such as the Prydz Bay vicinity, indicate significant variability in the glaciation patterns (e.g. Domack et al. 1998, Zwartz et al. 1998, Hodgson et al. 2005).


2017 ◽  
Vol 10 (9) ◽  
pp. 691-697 ◽  
Author(s):  
Lauren M. Simkins ◽  
John B. Anderson ◽  
Sarah L. Greenwood ◽  
Helge M. Gonnermann ◽  
Lindsay O. Prothro ◽  
...  

2012 ◽  
Vol 57 ◽  
pp. 85-94 ◽  
Author(s):  
Luigia Di Nicola ◽  
Carlo Baroni ◽  
Stefan Strasky ◽  
Maria Cristina Salvatore ◽  
Christian Schlüchter ◽  
...  

1982 ◽  
Vol 3 ◽  
pp. 344 ◽  
Author(s):  
V.I. Bardin

Palaeoglaciological studies, including glaciogeomorphological observations and comprehensive studies of the composition of glacial deposits, undertaken by scientists of a number of countries, enable the major stages in the evolution of glaciation of some regions of East Antarctica to be outlined. In this report, palaeoglaciological reconstructions for certain key territories: Queen Maud Land, Mac. Robertson Land, and Victoria Land are considered. The completeness and reliability of such reconstructions are also discussed. The region of Prince Charles Mountains (Mac. Robertson Land) turned out to be one of the most significant for palaeoglaciology. In this region, the author has discovered and studied glacial deposits of at least six age stages, their formation having taken place during approximately 20 Ma. An attempt is made to compare the results of regional studies and to present the evolution of the development of the whole East Antarctic ice sheet in space and time. Different examples of palaeoglaciological reconstructions of the ice sheet of East Antarctica are presented, the possibilities of different approaches are evaluated practically, and schematic maps of the change in glaciation of East Antarctic regions at different evolutional stages, compiled by the author, are presented for discussion.


2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

<p>The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.</p><p>We use the Úa numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS. </p>


2018 ◽  
Vol 12 (2) ◽  
pp. 491-504 ◽  
Author(s):  
John W. Goodge

Abstract. Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2–2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6  ±  1.9 µW m−3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m−2 and an average of 48.0  ±  13.6 mW m−2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tennant Creek inliers of Australia but is dissimilar to other areas like the Central Australian Heat Flow Province that are characterized by anomalously high heat flow. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in the thermal contribution to the overlying ice sheet from upper crustal heat production. Despite these minor differences, ice-sheet models may favor a geologically realistic input of crustal heat flow represented by the distribution of ages and geothermal characteristics found in these glacial clasts.


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2017 ◽  
Author(s):  
John W. Goodge

Abstract. Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. Bedrock outcrop is limited to coastal margins and rare inland exposures, yet valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th and K concentrations in a suite of Proterozoic (1.2–2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 μW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33–84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially-sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tenant Creek inliers of Australia, but is dissimilar to other areas characterized by anomalously high heat flow in the Central Australian Heat Flow Province. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in thermal contribution to the overlying ice sheet from upper crustal heat production. Despite their minor differences, ice-sheet models may favor a geologically realistic model of crustal heat flow represented by such a distribution of ages and geothermal characteristics.


Sign in / Sign up

Export Citation Format

Share Document