Monitoring of a landslide through the use of UAV survey

Author(s):  
Simone Pillon ◽  
Davide Martinucci ◽  
Annelore Bezzi ◽  
Giulia Casagrande ◽  
Giorgio Fontolan ◽  
...  

<p>The monitoring of landslides using UAVs is particularly convenient as these are dangerous areas that present access difficulties. This study aims to integrate monitoring carried out via traditional techniques (GNSS and total station surveys of benchmarks) with UAV photogrammetric survey, as the latter allows for a precise assessment of the volumes affected by movement. The Masarach landslide, located in Friuli Venezia Giulia (north east Italy), covers an area of approximately 200 ha. Two surveys were carried out two years apart in order to measure displacements of much greater magnitude than instrumental errors. In the first survey, restricted to the most active area, a six rotor UAV was used, with a maximum take-off mass of 4 kg, which carried a 20 Mpixel APS-C camera. 243 high resolution images were captured and 27 GCPs (Ground Control Point) were surveyed with a GNSS RTK reciever. In the second survey a DJI Phantom 4 Pro UAV was used, carrying a 20 Mpixel 1“ sensor camera. 978 high resolution images were captured and 40 GCPs (Ground Control Point) were surveyed with a GNSS RTK reciever. Data were analyzed using Agisoft Metashape Professional to produce an orthophoto and a DSM (Digital Surface Model) with a ground resolution of 0.02 m and 0.04 m respectively. The DSMs were compared in ArcGIS to calculate the moving masses and highlight the areas of greatest instability. It emerged that approximately 10,000 cubic meters of landslide material were transported to the Arzino stream below, with verified displacements on the control point ranging from meters to centimeters. This work made it possible to accurately define the most active portion of the landslide.</p>

2018 ◽  
Vol 2 ◽  
pp. 535
Author(s):  
Maundri Prihanggo

<p>Saat ini, citra satelit resolusi sangat tinggi digunakan dalam berbagai macam aplikasi, terutama pemetaan skala besar. Sebelum dapat digunakan, citra satelit tersebut harus diorthorektifikasi terlebih dahulu. Data <em>Digital Surface Model </em>(DSM) dan <em>Ground Control Point</em> (GCP) adalah dua data utama yang diperlukan saat melakukan orthorektifikasi. Perbedaan data DSM yang digunakan akan menghasilkan perbedaan nilai ketelitian horizontal pada kedua citra tegak hasil orthorektifikasi. Pada penelitian ini digunakan dua jenis DSM yaitu SRTM dan Terrasar-X. Ketelitian vertikal dari SRTM adalah 90 m sedangkan ketelitian vertikal dari Terrasar-X adalah 12,5 m. Penelitian ini berlokasi di Wilayah Buli, Kabupaten Halmahera Timur, Provinsi Maluku. Terdapat tiga sensor citra satelit yang digunakan yaitu Pleiades, Quickbird dan Worldview-2 yang digunakan pada lokasi penelitian. Total GCP yang digunakan adalah 33 titik, tiap titiknya diukur dengan melakukan pengamatan geodetik dan memiliki ketelitian horizontal ≤15 cm dan ketelitian vertikal ≤30 cm. Ketelitian horizontal dari citra tegak satelit resolusi sangat tinggi diperoleh dengan melakukan uji terhadap Independent Check Point (ICP). Total ICP yang digunakan adalah 12 titik, tiap titik ICP diukur dengan metode dan standar yang sama dengan titik GCP. Ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data SRTM adalah 18,856 m sedangkan ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data Terrasar-X adalah 2.168 m . Hasil dari penelitian ini membuktikan bahwa ketelitian vertikal data DSM yang digunakan memberikan pengaruh pada citra tegak satelit hasil orthorektifikasi tersebut. Mengacu pada Peraturan Kepala BIG nomor 15 tahun 2014, citra tegak satelit hasil orthorektifikasi menggunakan data Terrasar-X sebagai DSM memenuhi ketelitian horizontal peta dasar kelas 3 skala 1:5.000 sedangkan citra tegak satelit hasil orthorektifikasi menggunakan data SRTM sebagai DSM tidak dapat memenuhi ketelitian horizontal peta dasar skala besar.</p><p><strong>Kata kunci:</strong> orthorektifikasi, DSM, ketelitian horizontal</p>


2019 ◽  
Vol 94 ◽  
pp. 02008
Author(s):  
Teguh Hariyanto ◽  
Akbar Kurniawan ◽  
Cherie Bhekti Pribadi ◽  
Rizal Al Amin

In the rapidly evolving technology era, various survey methods have been widely used one of them by remote sensing using satellite. It is known that the satellite image recording process is covered by rides (satellites) moving over the Earth's surface at hundreds of kilometers, causing satellite imagery to have geometric distortion. To reduce the effect of geometric distortion of objects on the image, geometric correction by orthorectification is done. Pleiades is a satellite of high resolution satellite image producer made by Airbus Defense & Space company. The resulting satellite imagery has a 0.5 meter spatial resolution. As a reference for the more detailed space utilization activities of space utilization arranged in the Regional Spatial Plans, Detailed Spatial Plans was created with the 1: 5000 scale map which has been governed by the Geospatial Information Agency. In the process of orthorectifying satellite imagery for this 1: 5000 scale map, ground control or Ground Control Point (GCP) is used for geometric correction and Digital Elevation Model (DEM) data. In this research, the optimal number of GCP usage for orthorectification process in Rational Function method is 21 GCP using 2nd order polynomial


2020 ◽  
Author(s):  
Davide Martinucci ◽  
Simone Pillon ◽  
Annelore Bezzi ◽  
Giulia Casagrande ◽  
Giorgio Fontolan ◽  
...  

&lt;p&gt;Photogrammetric surveys from UAV and LiDAR surveys are two techniques that allow for the production of very high resolution point clouds. The use of these techniques result in a detailed reconstruction of difficult-to-access environments such as underground cavities. A rigorous georeferencing of the acquired data allows for a comparison of the hypogean development of the cave to the overlying territory. This study presents a case of integration between these two techniques, applied to the risk assessment of the collapse of the vaults in a natural cavity in the Trieste Karst (north east Italy). This site is particularly delicate given that on the slope above the cave there is an abandoned stone quarry. In order to survey the quarry above the cave, a flight was performed with UAV, while the cave was surveyed with Laser Scan from the ground. The flight was made using a UAV DJI Phantom RTK, which carried a 20 Mpixel 1&amp;#8220; sensor camera. 8 ha of terrain was surveyed, capturing about 733 high resolution images and surveying 22 GCPs (Ground Control Point) with a GNSS RTK receiver. It was possible to reduce the number of GCPs, since the drone recorded the shooting positions very accurately with the on-board GPS RTK. Data were analyzed using Agisoft Metashape Professional to produce an orthophoto and a DSM (Digital Surface Model) with a ground resolution of 0.02 m and 0.04 m respectively. The point cloud has a density of 586 points/m&lt;sup&gt;2&lt;/sup&gt;. The LiDaR survey was carried out using an ILRIS 3D ER laser scanner from Optec. The point cloud has a density of approximately 2500 points/m&lt;sup&gt;2&lt;/sup&gt; and 5 stations were needed to cover the underground development of the cavity. The georeferencing of the data was carried out by roto-translation on geo-referenced benchmarks, surveyed with GPS RTK and total station. The point cloud was processed using Terrascan software (Terrasolid). The two point clouds were aligned, geo-referenced and combined using Polyworks software (Innovmetric), in order to check the thicknesses of the material present above the vault of the cave. The integration of epigean and hypogean data made it possible to identify some critical points related to a vault thickness of approximately 1.5 meters, located at the quarry square. This work made it possible to highlight critical issues difficult to detect without the integrated approach of these different survey methodologies.&lt;/p&gt;


2019 ◽  
Vol 11 (6) ◽  
pp. 692 ◽  
Author(s):  
Hossein Rizeei ◽  
Biswajeet Pradhan

Orthorectification is an important step in generating accurate land use/land cover (LULC) from satellite imagery, particularly in urban areas with high-rise buildings. Such buildings generally appear as oblique shapes on very-high-resolution (VHR) satellite images, which reflect a bigger area of coverage than the real built-up area on LULC mapping. This drawback can cause not only uncertainties in urban mapping and LULC classification, but can also result in inaccurate urban change detection. Overestimating volume or area of high-rise buildings has a negative impact on computing the exact amount of environmental heat and emission. Hence, in this study, we propose a method of orthorectfiying VHR WorldView-3 images by integrating light detection and ranging (LiDAR) data to overcome the aforementioned problems. A 3D rational polynomial coefficient (RPC) model was proposed with respect to high-accuracy ground control points collected from the LiDAR data derived from the digital surface model. Multiple probabilities for generating an orthrorectified image from WV-3 were assessed using 3D RCP model to achieve the optimal combination technique, with low vertical and horizontal errors. Ground control point (GCPs) collection is sensitive to variation in number and data collection pattern. These steps are important in orthorectification because they can cause the morbidity of a standard equation, thereby interrupting the stability of 3D RCP model by reducing the accuracy of the orthorectified image. Hence, we assessed the maximum possible scenarios of resampling and ground control point collection techniques to bridge the gap. Results show that the 3D RCP model accurately orthorectifies the VHR satellite image if 20 to 100 GCPs were collected by convenience pattern. In addition, cubic conventional resampling algorithm improved the precision and smoothness of the orthorectified image. According to the root mean square error, the proposed combination technique enhanced the vertical and horizontal accuracies of the geo-positioning process to up to 0.8 and 1.8 m, respectively. Such accuracy is considered very high in orthorectification. The proposed technique is easy to use and can be replicated for other VHR satellite and aerial photos.


2020 ◽  
Vol 5 (1) ◽  
pp. 71-84
Author(s):  
Adhyta Harfan ◽  
Dipo Yudhatama ◽  
Imam Bachrodin

Metode Fotogrametri telah banyak digunakan dalam survei dan pemetaan. Seiring dengan kemajuan ilmu pengetahuan dan teknologi, metode fotogrametri saat ini berbasiskan pesawat tanpa awak atau yang lebih dikenal dengan UAV (Unmanned Aerial Vehicle). Kelebihan metode fotogrametri berbasiskan UAV untuk pengukuran garis pantai adalah memiliki resolusi spasial yang sangat tinggi dan dapat menjagkau daerah-daerah yang sulit dan berbahaya. Di samping itu juga dapat memberikan data foto udara terkini dengan sekala detail. Dalam penelitian ini membandingkan ketelitian horisontal antara hasil pengukuran garis pantai menggunakan metode fotogrametri berbasiskan UAV secara rektifikasi dengan GCP (Ground Control Point) maupun secara PPK (Post Processed Kinematic) dengan pengukuran garis pantai metode GNSS RTK (Real Time Kinematic). Hasil perhitungan ketelitian horisontal mengacu pada standar publikasi IHO S-44 tentang pengukuran garis pantai. Pemotretan dilakukan dengan ketinggian terbang 180 m, dengan tampalan depan dan samping 80%. Hasil perhitungan ketelitian horisontal foto udara terektifikasi 5 GCP, foto udara PPK dan foto udara PPK terektifikasi 1 GCP terhadap pengukuran garis pantai dengan metode GNSS RTK diperoleh nilai standar deviasi (σ) dan 95% selang kepercayaan (CI95%) masing-masing sebagai berikut: σ5gcp=10,989 cm dengan CI95% 16.8 cm < μ < 21.2 cm , σppk=26,066 cm dengan CI95% 26.5 cm < μ < 37 cm dan σppk1gcp=10,378 cm dengan CI95% 15.6 cm < μ < 19.8 cm. Kemudian terdapat 10 objek tematik berdasarkan Peta Laut Nomor 1 yang dapat diinterpretasi pada hasil orthomosaic foto udara.


Sign in / Sign up

Export Citation Format

Share Document