scholarly journals Pemanfaatan Metode Fotogrametri untuk Pengukuran Garis Pantai dan Identifikasi Objek-Objek Tematik dengan Menggunakan Wahana Uav (Unmanned Aerial Vehicle) (Studi Kasus Pengukuran Garis Pantai di Pangkalan TNI AL Pondok Dayung

2020 ◽  
Vol 5 (1) ◽  
pp. 71-84
Author(s):  
Adhyta Harfan ◽  
Dipo Yudhatama ◽  
Imam Bachrodin

Metode Fotogrametri telah banyak digunakan dalam survei dan pemetaan. Seiring dengan kemajuan ilmu pengetahuan dan teknologi, metode fotogrametri saat ini berbasiskan pesawat tanpa awak atau yang lebih dikenal dengan UAV (Unmanned Aerial Vehicle). Kelebihan metode fotogrametri berbasiskan UAV untuk pengukuran garis pantai adalah memiliki resolusi spasial yang sangat tinggi dan dapat menjagkau daerah-daerah yang sulit dan berbahaya. Di samping itu juga dapat memberikan data foto udara terkini dengan sekala detail. Dalam penelitian ini membandingkan ketelitian horisontal antara hasil pengukuran garis pantai menggunakan metode fotogrametri berbasiskan UAV secara rektifikasi dengan GCP (Ground Control Point) maupun secara PPK (Post Processed Kinematic) dengan pengukuran garis pantai metode GNSS RTK (Real Time Kinematic). Hasil perhitungan ketelitian horisontal mengacu pada standar publikasi IHO S-44 tentang pengukuran garis pantai. Pemotretan dilakukan dengan ketinggian terbang 180 m, dengan tampalan depan dan samping 80%. Hasil perhitungan ketelitian horisontal foto udara terektifikasi 5 GCP, foto udara PPK dan foto udara PPK terektifikasi 1 GCP terhadap pengukuran garis pantai dengan metode GNSS RTK diperoleh nilai standar deviasi (σ) dan 95% selang kepercayaan (CI95%) masing-masing sebagai berikut: σ5gcp=10,989 cm dengan CI95% 16.8 cm < μ < 21.2 cm , σppk=26,066 cm dengan CI95% 26.5 cm < μ < 37 cm dan σppk1gcp=10,378 cm dengan CI95% 15.6 cm < μ < 19.8 cm. Kemudian terdapat 10 objek tematik berdasarkan Peta Laut Nomor 1 yang dapat diinterpretasi pada hasil orthomosaic foto udara.

2020 ◽  
Vol 1 (1) ◽  
pp. 191-200
Author(s):  
Ryan Nugraha ◽  
Sigit Putrasakti

ABSTRAKTeknik pengambilan foto udara yang saat ini sedang berkembang, tidak bisa dipungkiri lagi bahwa teknologi Unmanned Aerial Vehicle (UAV), khususnya drone merupakan salah satu teknologi yang sangat efektif dan efisien dalam melakukan kegiatan mapping (pemetaan). Kegiatan mapping menggunakan drone ini juga tidak luput dari industri pertambangan, khususnya tambang batu bara yang saat ini mulai popular menggunakan salah satu teknologi yang modern ini. Salah satu jenis UAV yang digunakan PT Arutmin Indonesia adalah drone quadcotper DJI Phantom 4 RTK yang berbasis base GPS metode Real Time Kinematic (RTK). Kegiatan mapping menggunakan drone diperlukan beberapa titik ikat atau kontrol di permukaan tanah yang disebar di area mapping yang dikenal dengan Ground Control Point (GCP). GCP berfungsi sebagai titik ikat atau kontrol di permukaan tanah. Sebaiknya GCP disebar merata di permukaan tanah area mapping yang areanya bebas dari obstacles, dan tidak mengganggu kegiatan penambangan agar hasil dari pengolahan data diharapkan menghasilkan data orthophoto dan kontur topografi yang presisi dan akurat. Kegiatan mapping yang dilakukan PT Arutmin Indonesia ini dilakukan di area in pit dump dengan sebaran enam data GCP yang disebar di ujung-ujung dan tengah batasan area mapping. GCP yang tidak di sebar merata di area mapping akan menghasilkan data orthophoto dan kontur topografi yang tidak presisi dan akurat. Ini disebabkan adanya area mapping yang tidak terikat/terkontrol oleh GCP. Area mapping yang tidak tercover GCP, dominan orthophoto yang dihasilkan tidak sesuai dengan aktual kondisi in pit dump. Orthophoto in pit dump ini, keadaan bench dump akan terlihat tidak lurus atau terpisah atau tidak menyambung karena posisi horizontal yang dihasilkan tidak presisi dan akurat. Begitu juga dengan data topografi, apabila area mapping tidak tercover GCP, akan menimbulkan variance +/- 5-10 m pada posisi horizontal (easting dan northing) dan 3-5 m pada posisi vertical (elevation). Dengan demikian data GCP yang disebar merata di area mapping merupakan salah satu parameter untuk menghasilkan data orthophoto dan kontur yang presisi dan akurat. GCP yang disebar merata di area mapping akan memberikan pengaruh terhadap ketelitian rektifikasi yang ditunjukkan melalui nilai Root Mean Square Error (RMSE) ketelitian jarak dan posisi (koordinat). Kata Kunci: GCP, mapping, in pit dump, rektifikasi   ABSTRACT The technique of taking aerial photographs is currently developing, it is undeniable that the technology of Unmanned Aerial Vehicle (UAV), especially drones, is one of the technologies that is very effective and efficient in conducting mapping activities. Mapping activities using drones are also not spared from the mining industry, especially coal mining which is currently gaining popularity using one of these modern technologies. One type of UAV used by PT Arutmin Indonesia is the DJI Phantom 4 RTK quadcotper drone based on the GPS Real Time Kinematic (RTK) method. Mapping activities using drones require a number of grounding points or controls that are spread out in a mapping area known as a Ground Control Point (GCP). GC Work as a bonding point or control at ground level. GCP should be distributed evenly on unobstructed mapping surface, and there is no mining activity so that the results of data processing are expected to produce precise and accurate orthophoto and topographic contour data. The mapping activity carried out by PT Arutmin Indonesia was carried out in an area in the pit dump with the distribution of six GCP data distributed at the edges and the mapping of the middle area. GCP that is not spread evenly in the mapping area will produce orthophoto data and topographic contours that are not precise and accurate. This represents the existence of an area mapping that is not approved / controlled by GCP. Mapping the area that is not covered by GCP, the dominant orthophoto produced is not in accordance with the actual conditions in the pit dump. Orthophoto in this pit dump, the state of the dump bench will look not straight or separate or not connect because the resulting horizontal position is not precise and accurate. Likewise with topographic data, mapping the rejected area is not covered by GCP, will cause variance +/- 5-10 m in the horizontal position (east and north) and 3-5 m vertical position (elevation). Thus GCP data distributed evenly in the mapping area is one of the parameters to produce precise and accurate orthophoto and contour data. GCP that is spread evenly in the mapping area will give effect to the accuracy of rectification studied through the value of Root Mean Square Error (RMSE) accuracy of distance and position (coordinates). Keywords: GCP, mapping, in pit dump, rectification


2021 ◽  
Vol 2 (9) ◽  
pp. 1663-1681
Author(s):  
Dio Mega Putri ◽  
Ahmad Perwira Mulia

Salah satu fungsi manajemen zona pantai adalah untuk menjaga kestabilan pantai sehingga sangat memerlukan data monitoring zona pantai. Namun, data monitoring dan penelitian tentang kondisi zona pantai dan perubahan garis pantai masih sedikit. Pesatnya perkembangan teknologi mengakibatkan pekerjaan survei dan pemetaan zona pantai kini dapat dilakukan dengan mudah, yaitu dengan menggunakan teknologi UAV. Penelitian ini bertujuan untuk menganalisis kondisi zona pantai berdasarkan ortofoto yang diambil oleh UAV yang dikontrol dengan menggunakan GPS Geodetik di lapangan dan menguraikan tahapan pembentukan fotogrametri dengan UAV hingga menghasilkan gambar ortofoto yang terkoreksi. Metodologi yang diterapkan dalam penelitian ini terdiri dari prasurvei, survei lapangan dan pasca survei. Tahapan awal penelitian meliputi persiapan teknis dan non teknis, pengamatan area survey dan melakukan studi referensi. Tahapan survei lapangan dilakukan untuk mengumpulkan data primer berupa hasil pengukuran Ground Control Point (GCP) dan pengambilan mosaik foto udara menggunakan UAV/Drone, mengambil foto dokumentasi lapangan, serta memenuhi kebutuhan survei lainnya. Tahapan pasca survei merupakan kegiatan pengolahan data foto udara serta pengolahan foto dokumentasi. Nilai ketentuan ketelitian geometri berdasarkan kelas (CE90 dan LE90) termasuk ke dalam kelas 1. Berdasarkan hasil perhitungan selisih jarak beberapa objek di foto pada komputer dan jarak sebenarnya di lapangan, diperoleh rata-rata persentase akurasi sebesar 97%. Hal tersebut menandakan bahwa pengukuran menggunakan UAV memiliki akurasi yang tinggi. UAV merupakan alat yang ideal untuk survei dan pemetaan zona pantai serta masalah pantai lainnya.


2019 ◽  
Vol 2018 (1) ◽  
Author(s):  
Dhiky Hartono ◽  
Soni Darmawan

ABSTRAKPendaftaran Tanah Sistematik Lengkap (PTSL) merupakan kegiatan pendaftaran tanah untuk pertama kali yang dilakukan secara serentak di Indonesia. Program PTSL dimulai pada tahun 2016 dan ditargetkan selesai pada tahun 2025. Dengan luas darat Indonesia mencapai 2,01 juta km2, dibutuhkan teknologi yang dapat mempercepat program PTSL, di antaranya menggunakan pesawat tanpa awak (drone). Tujuan dari penelitian ini adalah untuk mengetahui sejauh mana kemampuan unmanned aerial vehicle (UAV) jenis Quadcopter untuk pemetaan bidang tanah yang ditinjau dari ketelitian, biaya, dan kecepatan. Daerah yang akan dikaji merupakan daerah yang sedang melaksanakan program PTSL yaitu Desa Solokan Jeruk Kecamatan Solokan Jeruk Kabupaten Bandung. Metodologi penelitian terdiri atas akuisisi data menggunakan UAV jenis Quadcopter dan proses pengolahan foto menggunakan perangkat lunak Agisoft Photoscan yang digeoreferensikan dengan ground control points (GCP) yang didapat dari pengamatan GPS Stop and Go. Hasil penelitian ini menunjukkan UAV jenis Quadcopter dapat mempercepat program PTSL dengan tingkat akurasi 96%, kecepatan penyediaan peta kerja atau peta dasar untuk program PTSL kurang dari 5 hari untuk luasan 1000 Ha, namun dengan biaya yang cukup tinggi.Kata Kunci: PTSL, UAV jenis Quadcopter, Ground Control Point (GCP) ABSTRACTComplete Systematic Land Registration (CSLR) is a land registration activity for the first time that is carried out simultaneously in Indonesia. The PTSL program was started in 2016 and targeted for completion by 2025. With Indonesia's land area reaching 2.01 million km2, technology is needed that can accelerate the CSLR program, one of which is using a drone. The purpose of this research is to know the extent of Unmanned Aerial Vehicle (UAV) capability of Quadcopter type for mapping of plot of land in terms of accuracy, speed, and economics. The study area is area that is being implemented the program, which located in the village of Solokan Jeruk, Solokan Sub-District, Bandung Regency. The research methodology consists of data acquisition by using UAV type Quadcopters and photo processing using Agisoft Photoscan software that will be georeferenced to the Ground Control Point (GCP) that is obtained from the GPS Real Time Kinematic observation using the Stop and Go method. The results of this study indicate that the UAV type Quadcopter can accelerate the CSLR program by providing 96% accuracy, and the speed of providing a work map or base map for CSLR program of less than 5 days for 1000 Ha, but at a high cost.Keywords: CSLR, UAV type Quadcopter, Ground Control Point (GCP)


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3534 ◽  
Author(s):  
Haiqing He ◽  
Ting Chen ◽  
Huaien Zeng ◽  
Shengxiang Huang

In this study, an approach using ground control point-free unmanned aerial vehicle (UAV)-based photogrammetry is proposed to estimate the volume of stockpiles carried on barges in a dynamic environment. Compared with similar studies regarding UAVs, an indirect absolute orientation based on the geometry of the vessel is used to establish a custom-built framework that can provide a unified reference instead of prerequisite ground control points (GCPs). To ensure sufficient overlap and reduce manual intervention, the stereo images are extracted from a UAV video for aerial triangulation. The region of interest is defined to exclude the area of water in all UAV images using a simple linear iterative clustering algorithm, which segments the UAV images into superpixels and helps to improve the accuracy of image matching. Structure-from-motion is used to recover three-dimensional geometry from the overlapping images without assistance of exterior parameters obtained from the airborne global positioning system and inertial measurement unit. Then, the semi-global matching algorithm is used to generate stockpile-covered and stockpile-free surface models. These models are oriented into a custom-built framework established by the known distance, such as the length and width of the vessel, and they do not require GCPs for coordinate transformation. Lastly, the volume of a stockpile is estimated by multiplying the height difference between the stockpile-covered and stockpile-free surface models by the size of the grid that is defined using the resolution of these models. Results show that a relatively small deviation of approximately ±2% between the volume estimated by UAV photogrammetry and the volume calculated by traditional manual measurement was obtained. Therefore, the proposed approach can be considered the better solution for the volume measurement of stockpiles carried on barges in a dynamic environment because UAV-based photogrammetry not only attains superior density and spatial object accuracy but also remarkably reduces data collection time.


Author(s):  
J. K. S. Villanueva ◽  
A. C. Blanco

<p><strong>Abstract.</strong> This research presents a method in assessing the impact of Ground Control Point (GCP) distribution, quantity, and inter-GCP distances on the output Digital Elevation Model (DEM) by utilizing SfM and GIS. The study was carried out in a quarry site to assess the impacts of these parameters on the accuracy of accurate volumetric measurements UAV derivatives. Based on GCP Root Mean Square Error (RMSE) and surface checkpoint error (SCE), results showed that the best configuration is the evenly distributed GCP set (1.58&amp;thinsp;m average RMSE, 1.30&amp;thinsp;m average SCE). Configurations clumped to edge and distributed to edge follow suit with respective RMSE (SCE) of 2.53&amp;thinsp;m (2.13&amp;thinsp;m) and 3.11&amp;thinsp;m (2.54&amp;thinsp;m). The clumped to center configuration yielded 6.23&amp;thinsp;m RMSE and 4.66&amp;thinsp;m SCE. As the number of GCPs used increase, the RMSE and SCE are observed to decrease consistently for all configurations. Further iteration of the best configuration showed that from RMSE of 4.11&amp;thinsp;m when 4 GCPs are used, there is a drastic decrease to 0.86&amp;thinsp;m once 10 GCPs are used. From that quantity, only centimeter differences can be observed until the full set of 24 GCPs have been used with a 0.012&amp;thinsp;m error. This is reflected in the stockpile measurement when the iteration results are compared to the reference data. The dataset processed with a minimum of 4 GCPs have a 606,991.43&amp;thinsp;m<sup>3</sup> difference, whereas the dataset processed with 23 out of 24 has a 791.12&amp;thinsp;m<sup>3</sup> difference from the reference data. The accuracy of the SfM-based DEM increases with the quantity of the GCPs used with an even distribution.</p>


Author(s):  
Lương Ngọc Dũng ◽  
Trần Đình Trọng ◽  
Vũ Đình Chiều ◽  
Bùi Duy Quỳnh ◽  
Hà Thị Hằng ◽  
...  

Giải pháp thành lập bản đồ địa hình bằng thiết bị bay không người lái (Unmanned Aerial Vehicle - UAV) đang ngày càng phổ biến ở Việt Nam. Đã có nhiều nghiên cứu chứng minh thiết bị UAV đảm bảo độ chính xác thành lập bản đồ địa hình tỷ lệ lớn, tuy nhiên chưa có các giải pháp cụ thể cho công trình đặc thù dạng tuyến. Mục tiêu nghiên cứu của bài báo là các chế độ bay phù hợp cho công tác khảo sát địa hình các công trình dạng tuyến. Đối tượng thực nghiệm, một đoạn đường bộ thuộc địa phận đê Xuân Quan, Hà Nội, được khảo sát bằng thiết bị UAV Phantom 4 Pro với các chế độ khác nhau trên các phần mềm điều khiển bay có sẵn. Kết quả thực nghiệm các chế độ bay được so sánh với kết quả đo định vị động thời gian thực (Global Navigation Satellite System/Real Time Kinematic - GNSS/RTK) để đánh giá độ chính xác. Nghiên cứu chỉ ra kiểu bay dải phủ trùm, đối với công trình dạng tuyến, thích hợp ở các giai đoạn thiết kế kỹ thuật và thiết kế thi công. Trong khi kiểu bay 2 dải đơn phù hợp và hiệu quả cho các quá trình quy hoạch, đánh giá sơ bộ công trình dạng tuyến.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3205 ◽  
Author(s):  
Jairo R. Escobar Villanueva ◽  
Luis Iglesias Martínez ◽  
Jhonny I. Pérez Montiel

Geospatial products, such as digital elevation models (DEMs), are important topographic tools for tackling local flood studies. This study investigates the contribution of LiDAR elevation data in DEM generation based on fixed-wing unmanned aerial vehicle (UAV) imaging for flood applications. More specifically, it assesses the accuracy of UAV-derived DEMs using the proposed LiDAR-derived control point (LCP) method in a Structure-from-Motion photogrammetry processing. Also, the flood estimates (volume and area) of the UAV terrain products are compared with a LiDAR-based reference. The applied LCP-georeferencing method achieves an accuracy comparable with other studies. In addition, it has the advantage of using semi-automatic terrain data classification and is readily applicable in flood studies. Lastly, it proves the complementarity between LiDAR and UAV photogrammetry at the local level.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3882
Author(s):  
Nicola Angelo Famiglietti ◽  
Gianpaolo Cecere ◽  
Carmine Grasso ◽  
Antonino Memmolo ◽  
Annamaria Vicari

This paper investigated the achievable accuracy from a low-cost RTK (Real Time Kinematic)/PPK (Post Processing Kinematic) GNSS (Global Navigation Satellite Systems) system installed on board a UAV (Unmanned Aerial Vehicle), employing three different types of GNSS Bases (Alloy, RS2 and RING) working in PPK mode. To evaluate the quality of the results, a set of seven GCPs (Ground Control Points) measured by means of the NRTK (Network Real Time Kinematic) technique was used. The outcomes show a RMSE (Root Mean Square Error) of 0.0189 m for an ALLOY Base, 0.0194 m for an RS2 Base and 0.0511 m for RING Base, respectively, on the vertical value of DEMs (Digital Elevation Models) obtained by a photogrammetric process. This indicates that, when changing the Base for the PPK, the solutions are different, but they can still be considered adequate for precision positioning with UAVs, especially when GCPs could be used with some difficulty. Therefore, the integration of a RTK/PPK GNSS module on a UAV allows the reconstruction of a highly detailed and precise DEM without using GCPs and provides the possibility to carry out surveys in inaccessible areas.


Sign in / Sign up

Export Citation Format

Share Document