High frequency stable isotope signals as proxy for physiological responses to climate - Dual isotope approach at a European scale

Author(s):  
Valentina Vitali ◽  
Rosemarie Weigt ◽  
Stefan Klesse ◽  
Kerstin Treydte ◽  
Rolf Siegwolf ◽  
...  

<p>Picea abies and Fagus sylvatica, are two of the most important tree species in Europe, and their responses to climate are being extensively investigated, especially at the limits of their distribution. However, their physiology at temperate sites is not yet fully understood. In a European tree-ring network, 10 sites along a climate gradient were sampled throughout Central Europe, and tree-ring width and stable isotope chronologies (C and O) were measured. The year-to-year variability of the isotopes time series for the last 100 years was analyzed in relation to tree-ring growth, spatial distribution, and seasonal climate.</p><p>Climate sensitivity of radial growth of both species was rather variable and site-dependent, and was strongest at the driest sites. On the contrary, variability in the isotopic ratios consistently responded to summer climate, particularly to vapor pressure deficit. The high δ<sup>18</sup>O coherence of the short-term variability between sites and species highlights the strength of the environmental signal in the O chronology also across long distances. On the contrary, δ<sup>13</sup>C shows lower correlations between sites and species, showing a stronger site-dependency, and a lower intra-annual variability. The generally positive correlation between the year-to-year differences in δ<sup>13</sup>C and δ<sup>18</sup>O across most sites demonstrates the strong role of stomatal conductance in controlling leaf gas exchange for these species. However, in the last decades, sites showed a dissimilar shift in the isotopes relationships, with the warmer sites showing an increase of either or both δ<sup>13</sup>C and δ<sup>18</sup>O and consequent decrease of photosynthetic rates and stomatal conductance, highlighting their dependency to atmospheric moisture demand and soil water availability.</p><p>Understanding the underlying physiological mechanisms controlling the short-term variation in tree-ring records will help with defining the performance of these ecologically and economically important tree species under future climate conditions.</p>

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 644 ◽  
Author(s):  
Pablo Casas-Gómez ◽  
Raúl Sánchez-Salguero ◽  
Pedro Ribera ◽  
Juan C. Linares

Extreme drought events are becoming increasingly frequent and extended, particularly in Mediterranean drought-prone regions. In this sense, atmospheric oscillations patterns, such as those represented by the North Atlantic Oscillation (NAO) index and the Westerly Index (WI) have been widely proven as reliable proxies of drought trends. Here, we used the Standardized Precipitation–Evapotranspiration Index (SPEI), as a reliable indicator of drought, to investigate the drought sensitivity of tree-ring width data (TRW) from several long-lived tree species (Abies borisii-regis, Abies cilicica, Abies pinsapo, Cedrus atlantica, Cedrus libanii, Pinus nigra, Pinus heldreichii). NAO and WI relations with TRW were also investigated in order to identify potential non-stationary responses among those drought proxies. Our temporal and spatial analyses support contrasting Mediterranean dipole patterns regarding the drought sensitivity of tree growth for each tree species. The spatial assessment of NAO and WI relationships regarding SPEI and TRW showed on average stronger correlations westward with non-stationary correlations between annual WI index and TRW in all species. The results indicate that the drought variability and the inferred drought-sensitive trees species (e.g., C. atlantica) are related to the NAO and the WI, showing that TRW is a feasible proxy to long-term reconstructions of Westerly Index (WI) variability in the Western Mediterranean region. Spatial variability of drought severity suggests a complex association between NAO and WI, likely modulated by an east–west Mediterranean climate dipole.


IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 379-394 ◽  
Author(s):  
Xuemei Shao ◽  
Shuzhi Wang ◽  
Haifeng Zhu ◽  
Yan Xu ◽  
Eryuan Liang ◽  
...  

This article documents the development of a precisely dated and wellreplicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated successfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research.


2019 ◽  
Vol 124 (5) ◽  
pp. 837-847 ◽  
Author(s):  
Jan Van den Bulcke ◽  
Marijn A Boone ◽  
Jelle Dhaene ◽  
Denis Van Loo ◽  
Luc Van Hoorebeke ◽  
...  

AbstractBackground and AimsTree rings, as archives of the past and biosensors of the present, offer unique opportunities to study influences of the fluctuating environment over decades to centuries. As such, tree-ring-based wood traits are capital input for global vegetation models. To contribute to earth system sciences, however, sufficient spatial coverage is required of detailed individual-based measurements, necessitating large amounts of data. X-ray computed tomography (CT) scanning is one of the few techniques that can deliver such data sets.MethodsIncrement cores of four different temperate tree species were scanned with a state-of-the-art X-ray CT system at resolutions ranging from 60 μm down to 4.5 μm, with an additional scan at a resolution of 0.8 μm of a splinter-sized sample using a second X-ray CT system to highlight the potential of cell-level scanning. Calibration-free densitometry, based on full scanner simulation of a third X-ray CT system, is illustrated on increment cores of a tropical tree species.Key ResultsWe show how multiscale scanning offers unprecedented potential for mapping tree rings and wood traits without sample manipulation and with limited operator intervention. Custom-designed sample holders enable simultaneous scanning of multiple increment cores at resolutions sufficient for tree ring analysis and densitometry as well as single core scanning enabling quantitative wood anatomy, thereby approaching the conventional thin section approach. Standardized X-ray CT volumes are, furthermore, ideal input imagery for automated pipelines with neural-based learning for tree ring detection and measurements of wood traits.ConclusionsAdvanced X-ray CT scanning for high-throughput processing of increment cores is within reach, generating pith-to-bark ring width series, density profiles and wood trait data. This would allow contribution to large-scale monitoring and modelling efforts with sufficient global coverage.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 473 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Jiang ◽  
Bagila ◽  
Ainur ◽  
...  

The divergence problem, which manifests as an unstable response relationship between tree-ring growth and climatic factors under the background of global warming, poses a challenge to both the traditional theory of dendroclimatology and the reliability of climatic reconstructions based on tree-ring data. Although Schrenk spruce, as the dominant tree species in the Tianshan Mountains, is frequently applied in the dendrochronological studies, the understanding of the divergence problem of this tree species is still limited. This study conducted correlation analysis between climatic factors and tree-ring width chronologies from 51 living and healthy specimens of Schrenk spruce at sites of high and low elevation in the Alatau Mountains to determine the stability of the response. The results revealed that the tree-ring width of the spruce specimens was correlated positively with precipitation and correlated negatively with temperature. Although the variations of the two tree-ring chronologies were similar, the radial growth of the spruce at the low elevation was found more sensitive to climatic factors. Furthermore, the sensitivity of tree growth to climate demonstrated an obvious increase after an abrupt change of climate under the background of the recent warming and wetting trend. Increased drought stress, calculated based on climatic data, was regarded as the main reason for this phenomenon. The results supply the gap of the stability of climatic response of tree growth in Central Asia to some extent.


IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 361-370 ◽  
Author(s):  
Amalava Bhattacharyya ◽  
Santosh K. Shah

A large number of tree species, especially of conifers growing in the Himalaya and a few broad-leaved taxa in the peninsular region, have been dendrochronologically analyzed in India. This paper is a review providing information as regards the present status and future prospects of tree-ring research in India. Many trees are recorded to have datable tree rings but only some of them have been used for climate reconstruction and other aspects, e.g., glacial fluctuation or palaeo-seismic dating. In future not only ring width which is widely used so far, but also other tree-ring parameters need to be analyzed for a better understanding of the regional climate and its linkage with other climatic phenomena in a global perspective.


2010 ◽  
Vol 30 (5) ◽  
pp. 636-647 ◽  
Author(s):  
E. Hilasvuori ◽  
F. Berninger
Keyword(s):  

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 90
Author(s):  
Denis A. Demidko ◽  
Olga V. Trefilova ◽  
Sergey S. Kulakov ◽  
Pavel V. Mikhaylov

The pine looper Bupalus piniaria is one of the most widespread phyllophagous insect species across Northern Eurasia, defoliating Scots pine forests over vast territories. Since there are not enough long-term documented observations on a series of outbreaks, there is a need for methods allowing them to be reconstructed to study their dynamics patterns. Previously, dendrochronological methods were successfully used to solve such issues. However, the most common approach is not applicable for the Western Siberian forest-steppe since it requires comparison with a non-damaged tree species close to pine in terms of longevity and resistance to rot. In the pine forests of the steppe and forest-steppe zones of Western Siberia, there are no species that are not damaged by the pine looper that meets these requirements. Methods allowing not using control species are also not free from disadvantages (e.g., weak specificity). Therefore, we have developed a new method based on the analysis, not of the tree-ring width but the early- and latewood width to reconstruct past defoliation events. The past defoliation by the pine looper is indicated by the presence of a negative pointer year for latewood, followed by a negative pointer year for earlywood in a subsequent year among the majority of individuals. Linear modeling showed a difference between the climate impact on radial growth and the defoliation one. The obtained reconstruction was compared with the results of other methods (mowing window, OUTBREAK, independent component analysis), literature, and Forest Service data. The developed new method (pointer year method; PYM) showed high efficiency confirmed by results of the tree-ring series analysis (11 revealed outbreaks in the past). Compared with other reconstruction techniques under the given conditions (a favorable combination of heat and humidity; probably low-intense and short defoliation), the proposed method provided more precise results than those proposed earlier. Due to high accuracy, the PYM can be useful for detecting late-summer and autumn past defoliations of tree species with clear difference between early- and latewood even though the damage was weak.


2021 ◽  
Vol 18 (12) ◽  
pp. 3539-3564
Author(s):  
Franziska Slotta ◽  
Lukas Wacker ◽  
Frank Riedel ◽  
Karl-Uwe Heußner ◽  
Kai Hartmann ◽  
...  

Abstract. The African baobab, Adansonia digitata L., has great paleoclimatological potential because of its wide distributional range and millennial length life span. However, dendroclimatological approaches are hampered by dating uncertainties due to its unique, parenchyma-dominated stem anatomy. Here, securely dated time series of annual wood increment growth and intra-ring stable isotopes of carbon and oxygen of cellulose for a baobab tree from Oman covering 1941 to 2005 were established and tested for relationships to hydroclimate variability. Precise dating with the atomic bomb peak (ABP) using highly resolved 14C measurements confirmed the annual character of the baobab's growth rings. F14C values of tree-ring cellulose were found up to 8.8 % lower than in the corresponding atmospheric CO2 for the period around the ABP, which in conjunction with a considerable autocorrelation of the δ13C series points to the incorporation of previous year's carbon contributing to the average age of intra-ring wood samples. F14C of terminal parenchyma bands, marking the tree-ring boundaries, were found to be considerably younger than their corresponding tree ring, indicating that parenchyma tissue is alive for many years, probably undergoing cell division and structural reorganization and contributing to secondary growth. In contrast to the δ13C time series, no significant autocorrelation was found in the δ18O series of tree-ring cellulose despite the enormous water storage potential of this stem-succulent tree species. Year-to-year variability in tree-ring width and stable isotope ratios revealed radial stem growth and the geochemistry of wood cellulose are influenced by fluctuations in the hydroclimate. In particular, δ18O was found to be a good climate proxy, followed by tree-ring width and δ13C. Tree-ring width and intra-ring δ18Omin correlated well with each other and with precipitation amount for the period from pre-monsoon May to the end of the monsoon season in September/October. Intra-annual stable isotope courses were found to be rather similar for both δ13C and δ18O. Years with particularly low monsoon rain were reflected by increased stable isotope values in the mid-section of intra-annual courses. Distinct patterns with low subseasonal isotope values seem indicative for years with heavy rainfall events from pre-monsoonal cyclones. Rain events from post-monsoonal cyclones may also be recorded; however, only 2 years of observation prevented a more conclusive evaluation.


2021 ◽  
Author(s):  
Christoph Schneider ◽  
Burkhard Neuwirth ◽  
Sebastian Schneider ◽  
Daniel Balanzategui ◽  
Stefanie Elsholz ◽  
...  

AbstractUsing dendroclimatological techniques this study investigates whether inner city tree-ring width (TRW) chronologies from eight tree species (ash, beech, fir, larch, lime, sessile and pedunculate oak, and pine) are suitable to examine the urban heat island of Berlin, Germany. Climate-growth relationships were analyzed for 18 sites along a gradient of increasing urbanization covering Berlin and surrounding rural areas. As a proxy for defining urban heat island intensities at each site, we applied urbanization parameters such as building fraction, impervious surfaces, and green areas. The response of TRW to monthly and seasonal air temperature, precipitation, aridity, and daily air-temperature ranges were used to identify climate-growth relationships. Trees from urban sites were found to be more sensitive to climate compared to trees in the surrounding hinterland. Ring width of the deciduous species, especially ash, beech, and oak, showed a high sensitivity to summer heat and drought at urban locations (summer signal), whereas conifer species were found suitable for the analysis of the urban heat island in late winter and early spring (winter signal).The summer and winter signals were strongest in tree-ring chronologies when the urban heat island intensities were based on an area of about 200 m to 3000 m centered over the tree locations, and thus reflect the urban climate at the scale of city quarters. For the summer signal, the sensitivity of deciduous tree species to climate increased with urbanity.These results indicate that urban trees can be used for climate response analyses and open new pathways to trace the evolution of urban climate change and more specifically the urban heat island, both in time and space.


2021 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

<p>It is uncertain how European beech (Fagus sylvatica L.) will perform under climate change. Several dendroclimatological studies suggest that increasing temperature will positively affect radial increments at sites optimal for its growth. However, it is not entirely clear how changing growth conditions will affect wood anatomy and thus wood properties. The aim of this study was therefore to analyse the relationships between climate conditions (temperature and precipitation) and wood anatomical traits in beech trees growing at optimal beech forest sites in Slovenia. Three forest sites representing the main Slovenian beech provenances were selected (Idrija, Javorniki, and Mašun). At each site, 16 increment cores were collected in 2016 and subsequently prepared for observation under the light microscope. Image analysis software (Image Pro-Plus and Roxas) were used for quantitative wood anatomy. Mean vessel area, vessel density, and relative conductive area were analysed in tree rings between 1960-2016. Furthermore, tree rings were divided into four quarters to assess the intra-annual variability in vessel features also in relation to weather conditions. The preliminary results indicated that there was a significant difference in tree-ring widths as well as in vessel features among the selected forest sites. Idrija, the late flushing provenance, had the narrowest tree rings, the highest vessel density and relative conductive area, and smallest mean vessel area. The other two sites had a similar mean vessel area, while the widest tree-ring width and the smallest vessel density and relative conductive area were observed at Mašun (the mid-flushing provenance). The response of tree-ring width and vessel features to changing climate conditions differed among sites/provenance. Tree-ring widths at Idrija and Javornik were positively affected by late winter temperature, while tree-ring widths at Mašun were mostly affected by summer precipitation. In the case of vessel features, the highest correlations with climate data were observed in the fourth quarter of the rings with late summer temperature and precipitation. In conclusion, early spring temperatures and summer precipitation proved to be the most important climatic factors affecting beech growth and vessel features.</p>


Sign in / Sign up

Export Citation Format

Share Document