scholarly journals Multi-model dynamic climate emulator for solar geoengineering

2016 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Ben Kravitz

Abstract. Climate emulators trained on existing simulations can be used to project the climate effects that would result from different possible future pathways of anthropogenic forcing, without relying on general circulation model (GCM) simulations for every possible pathway. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of green-house gas concentrations by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 x CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per year CO2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the difference between simulation and prediction typically smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well predicted, indicating the limits of the linearity assumption. For future pathways involving relatively small forcing from solar geoengineering, the errors introduced from nonlinear effects may be smaller than the uncertainty due to natural variability, and the emulator prediction may be a more accurate estimate of the forced component of the models' response than an actual simulation would be.

2016 ◽  
Vol 16 (24) ◽  
pp. 15789-15799 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Ben Kravitz

Abstract. Climate emulators trained on existing simulations can be used to project project the climate effects that result from different possible future pathways of anthropogenic forcing, without further relying on general circulation model (GCM) simulations. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of greenhouse gas concentrations, by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 × CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per year CO2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern Hemisphere sea ice extent, with the difference between simulation and prediction typically being smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern Hemisphere sea ice extent is less well predicted, indicating a limit to the linearity assumption.


1995 ◽  
Vol 43 (2) ◽  
pp. 174-184 ◽  
Author(s):  
Sandy P. Harrison ◽  
John E. Kutzbach ◽  
I. Colin Prentice ◽  
Pat J. Behling ◽  
Martin T. Sykes

AbstractThe last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord.


2001 ◽  
Vol 33 ◽  
pp. 513-520 ◽  
Author(s):  
Larissa Nazarenko ◽  
James Hansen ◽  
Nikolai Tausnev ◽  
Reto Ruedy

AbstractThe Q.-flux Goddard Institute of Space Studies (GISS) global climate model, in which an atmospheric general circulation model is coupled to a mixed-layer ocean with specified horizontal heat transports, is used to simulate the transient and equilibrium climate response to a gradual increase of carbon dioxide (1% per year increase of CO2 to doubled CO2). The results indicate that the current GISS model has a high sensitivity with a global annual warming of about 4°C for doubled CO2 . Enhanced warming is found at higher latitudes near sea-ice margins due to retreat of sea ice in the greenhouse experiment. Surface warming is larger in winter than in summer, in part because of the reductions in ice cover and thickness that insulate the winter atmosphere from the ocean. The annual mean reduction of sea-ice cover due to doubled CO2 is about 30% for the Northern Hemisphere. The CO2 experiment has a 70% reduction of sea-ice area and 55% thinning of ice in August in the Northern Hemisphere. Noticeable reduction of sea-ice cover has been found in both historical records and satellite observations. The largest reduction of simulated sea-ice extent occurs in summer, consistent with observations.


2013 ◽  
Vol 26 (16) ◽  
pp. 6092-6104 ◽  
Author(s):  
Matthieu Chevallier ◽  
David Salas y Mélia ◽  
Aurore Voldoire ◽  
Michel Déqué ◽  
Gilles Garric

Abstract An ocean–sea ice model reconstruction spanning the period 1990–2009 is used to initialize ensemble seasonal forecasts with the Centre National de Recherches Météorologiques Coupled Global Climate Model version 5.1 (CNRM-CM5.1) coupled atmosphere–ocean general circulation model. The aim of this study is to assess the skill of fully initialized September and March pan-Arctic sea ice forecasts in terms of climatology and interannual anomalies. The predictions are initialized using “full field initialization” of each component of the system. In spite of a drift due to radiative biases in the coupled model during the melt season, the full initialization of the sea ice cover on 1 May leads to skillful forecasts of the September sea ice extent (SIE) anomalies. The skill of the prediction is also significantly high when considering anomalies of the SIE relative to the long-term linear trend. It confirms that the anomaly of spring sea ice cover in itself plays a role in preconditioning a September SIE anomaly. The skill of predictions for March SIE initialized on 1 November is also encouraging, and it can be partly attributed to persistent features of the fall sea ice cover. The present study gives insight into the current ability of state-of-the-art coupled climate systems to perform operational seasonal forecasts of the Arctic sea ice cover up to 5 months in advance.


2020 ◽  
Vol 6 (36) ◽  
pp. eaaz9588
Author(s):  
Miriam C. Jones ◽  
Max Berkelhammer ◽  
Katherine J. Keller ◽  
Kei Yoshimura ◽  
Matthew J. Wooller

Anomalously low winter sea ice extent and early retreat in CE 2018 and 2019 challenge previous notions that winter sea ice in the Bering Sea has been stable over the instrumental record, although long-term records remain limited. Here, we use a record of peat cellulose oxygen isotopes from St. Matthew Island along with isotope-enabled general circulation model (IsoGSM) simulations to generate a 5500-year record of Bering Sea winter sea ice extent. Results show that over the last 5500 years, sea ice in the Bering Sea decreased in response to increasing winter insolation and atmospheric CO2, suggesting that the North Pacific is highly sensitive to small changes in radiative forcing. We find that CE 2018 sea ice conditions were the lowest of the last 5500 years, and results suggest that sea ice loss may lag changes in CO2 concentrations by several decades.


Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 203-217 ◽  
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.


2010 ◽  
Vol 7 (5) ◽  
pp. 1669-1701
Author(s):  
C. F. Postlethwaite ◽  
M. A. Morales Maqueda ◽  
V. Le Fouest ◽  
G. R. Tattersall ◽  
J. Holt ◽  
...  

Abstract. Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.


2015 ◽  
Vol 9 (5) ◽  
pp. 5681-5718 ◽  
Author(s):  
K. Castro-Morales ◽  
R. Ricker ◽  
R. Gerdes

Abstract. Together with sea ice, Arctic snow has experienced vast changes during the last decade due to a warming climate. Thus, it is relevant to study the past and present changes of Arctic snow to understand the implications to the sea ice component, precipitation, heat and radiation budgets. In this study, we analyze the changes of snow depth between 2000 and 2013 at regional scale represented in an Arctic coupled sea ice-general circulation model. We evaluate the model performance by direct comparison of the modeled snow depths (hs_mod) to snow depths from radar measurements from the NASA Operation IceBridge (hs_OIB) during the flight campaigns completed from 2009 to 2013. Despite the description of the snow in our model is simple (i.e. single layer without explicit snow redistribution processes) as in many current sea-ice models; the latitudinal distribution of hs_mod in the western Arctic is in good agreement to observations. The hs_mod is on average 3 cm thicker than hs_OIB in latitudes > 76° N. According to the model results, the hs in 2013 decreased 21 % with respect to the multi-year mean between 2000 and 2013. This snow reduction occurred mainly in FYI dominated areas, and is in good agreement to the year-to-year loss of sea ice, also well reproduced by the model. In a simple snow mass budget, our results show that 65 % of the yearly accumulated snow is lost by sublimation and snowmelt due to the heat transfer between the snow/ice interface and the atmosphere. Although the snow layer accumulates again every year, the long-term reduction in the summer sea-ice extent ultimately affects the maximum spring accumulation of snow. The model results exhibit a last decade thinning of the snowpack that is however one order of magnitude lower than previous estimates based on radar measurements. We suggest that the later is partially due to the lack of explicit snow redistribution processes in the model, emphasizing the need to include these in current sea-ice models to improve the snow representations.


2018 ◽  
Vol 31 (19) ◽  
pp. 8059-8079 ◽  
Author(s):  
Daniel E. Amrhein ◽  
Carl Wunsch ◽  
Olivier Marchal ◽  
Gael Forget

We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.


2018 ◽  
Vol 11 (1) ◽  
pp. 74-85
Author(s):  
Isimar de Azevedo Santos ◽  
Maria Gertrudes Alvarez Justi da Silva ◽  
Alfredo Silveira da Silva ◽  
Otto Corrêa Rotunno Filho

Abstract Satellite data enabled the Intergovernmental Panel on Climate Change (IPCC), through Report V, to indicate that the regional distribution of sea ice has been reducing in the Northern hemisphere high latitudes. This study assimilated that reduction into a general circulation model of intermediate complexity to simulate the tropical rainfall response. The Northern hemisphere tropospheric wind field simulations presented a clear similarity to the Northern Annular Mode negative phase. In particular, the meridional wind anomalies of the Northern hemisphere Ferrel cell suggest that the energy upsurge due to the boreal sea ice decrease results in an increase in the amplitude of the Rossby waves, thus connecting the polar zone to the tropics. The 500 hPa vertical motion and the rainfall distribution in the tropical belt simulations show a southward displacement of the Atlantic Intertropical Convergence Zone and also the South Atlantic Convergence Zone. Although several studies indicate the Intertropical Convergence Zone is shifted towards the hemisphere most heated by climatic variations, the apparent disagreement with our results can be understood by considering that some continental sectors in the Northern Hemisphere mid-latitudes have shown cooling in recent years, probably in response to the boreal sea ice decrease.


Sign in / Sign up

Export Citation Format

Share Document