From Urban Air Quality Forecasting and Information Systems to Integrated Urban Hydrometeorology, Climate and Environment Systems and Services for Smart Cities

Author(s):  
Alexander Baklanov ◽  

<p>This presentation is analysing a modern evolution in research and development from specific urban air quality systems to multi-hazard and integrated urban weather, environment and climate systems and services and provides an overview of joint results of large EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams. </p><p>Urban air pollution is still one of the key environmental issues for many cities around the world. A number of recent and previous international studies have been initiated to explore these issues. In particular relevant experience from several European projects will be demonstrated. MEGAPOLI studies aimed to assess the impacts of megacities and large air-pollution hotspots on local, regional and global air quality; to quantify feedback mechanisms linking megacity air quality, local and regional climates, and global climate change; and to develop improved tools for predicting air pollution levels in megacities (doi:10.5194/asr-4-115-2010). FUMAPEX developed for the first time an integrated system encompassing emissions, urban meteorology and population exposure for urban air pollution episode forecasting, the assessment of urban air quality and health effects, and for emergency preparedness issues for urban areas (UAQIFS: Urban Air Quality Forecasting and Information System; doi.org/10.5194/acp-6-2005-2006; doi.org/10.5194/acp-7-855-2007).</p><p>While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions, air quality and weather with climate and global atmospheric chemistry. WMO has established the Global Atmosphere Watch (GAW) Urban Research Meteorology and Environment (GURME) project which provides an important research contribution to the integrated urban services.</p><p>Most of the disasters affecting urban areas are of a hydro-meteorological nature and these have increased due to climate change. Cities are also responsible not only for air pollution emissions, but also for generating up to 70% of GHG emissions that drive large scale climate change. Thus, there is a strong feedback between contributions of cities to environmental health, climate change and the impacts of climate change on cities and these phases of the problem should not be considered separately. There is a critical need to consider the problem in a complex manner with interactions of climate change and disaster risk reduction for urban areas (doi:10.1016/j.atmosenv.2015.11.059, doi.org/10.1016/j.uclim.2017.05.004).</p><p>WMO is promoting safe, healthy and resilient cities through the development of Integrated Urban Weather, Environment and Climate Services (IUS). The aim is to build urban services that meet the special needs of cities through a combination of dense observation networks, high-resolution forecasts, multi-hazard early warning systems, disaster management plans and climate services. This approach gives cities the tools they need to reduce emissions, build thriving and resilient communities and implement the UN Sustainable Development Goals. The Guidance on IUS, developed by a WMO inter-programme working group, documents and shares the good practices that will allow countries and cities to improve the resilience of urban areas to a great variety of natural and other hazards (https://library.wmo.int/doc_num.php?explnum_id=9903).</p>

2019 ◽  
Author(s):  
Bas Mijling

Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not well known due to the sparseness of official monitoring networks, or unrealistic assumptions being made in urban air quality models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward because of the localized nature of air pollution, and the large uncertainties associated with measurements of low-cost sensors. In this study, we present a practical approach to producing high spatio-temporal resolution maps of urban air pollution capable of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality model, driven by an open source atmospheric dispersion model and emission proxies from open data sources, and (2) a practical spatial interpolation scheme, capable of assimilating observations with different accuracies. The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy of 39 % within 2 km of an observation location, and 53 % at larger distances. When low-cost measurements of the Urban AirQ campaign are included, the maps reveal more detailed concentration patterns in areas which are undersampled by the official network. During the summer holiday period, NO2 concentrations drop about 10 % due to reduced urban activity. The reduction is less in the historic city center, while strongest reductions are found around the access ways to the tunnel connecting the northern and the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic flow is redirected to other main roads. Overall, we show that Retina can be applied for an enhanced understanding of reference measurements, and as a framework to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas.


2007 ◽  
Vol 7 (3) ◽  
pp. 855-874 ◽  
Author(s):  
A. Baklanov ◽  
O. Hänninen ◽  
L. H. Slørdal ◽  
J. Kukkonen ◽  
N. Bjergene ◽  
...  

Abstract. Urban air pollution is associated with significant adverse health effects. Model-based abatement strategies are required and developed for the growing urban populations. In the initial development stage, these are focussed on exceedances of air quality standards caused by high short-term pollutant concentrations. Prediction of health effects and implementation of urban air quality information and abatement systems require accurate forecasting of air pollution episodes and population exposure, including modelling of emissions, meteorology, atmospheric dispersion and chemical reaction of pollutants, population mobility, and indoor-outdoor relationship of the pollutants. In the past, these different areas have been treated separately by different models and even institutions. Progress in computer resources and ensuing improvements in numerical weather prediction, air chemistry, and exposure modelling recently allow a unification and integration of the disjunctive models and approaches. The current work presents a novel approach that integrates the latest developments in meteorological, air quality, and population exposure modelling into Urban Air Quality Information and Forecasting Systems (UAQIFS) in the context of the European Union FUMAPEX project. The suggested integrated strategy is demonstrated for examples of the systems in three Nordic cities: Helsinki and Oslo for assessment and forecasting of urban air pollution and Copenhagen for urban emergency preparedness.


2006 ◽  
Vol 6 (2) ◽  
pp. 1867-1913 ◽  
Author(s):  
A. Baklanov ◽  
O. Hänninen ◽  
L. H. Slørdal ◽  
J. Kukkonen ◽  
N. Bjergene ◽  
...  

Abstract. Urban air pollution is associated with significant adverse health effects. Model-based abatement strategies are required and developed for the growing urban populations. In the initial development stage, these are focussed on exceedances of air quality standards caused by high short-term pollutant concentrations. Prediction of health effects and implementation of urban air quality information and abatement systems require accurate forecasting of air pollution episodes and population exposure, including modelling of emissions, meteorology, atmospheric dispersion and chemical reaction of pollutants, population mobility, and indoor-outdoor relationship of the pollutants. In the past, these different areas have been treated separately by different models and even institutions. Progress in computer resources and ensuing improvements in numerical weather prediction, air chemistry, and exposure modelling recently allow a unification and integration of the disjunctive models and approaches. The current work presents a novel approach that integrates the latest developments in meteorological, air quality, and population exposure modelling into Urban Air Quality Information and Forecasting Systems (UAQIFS) in the context of the European Union FUMAPEX project. The suggested integrated strategy is demonstrated for examples of the systems in three Nordic cities: Helsinki and Oslo for assessment and forecasting of urban air pollution and Copenhagen for urban emergency preparedness.


2016 ◽  
Vol 1 (2) ◽  
pp. 171
Author(s):  
Yakup Egercioglu ◽  
Nur Sinem Ozcan

Urban air pollution has been increasing due to ever increasing population, rapid urbanization, industrialization, energy usage, traffic density. The purpose of the study is to examine the relation between urban air quality and urban environmental factors in urban regeneration areas. Two common air polluters (SO2 and PM10) are considered in the study. The data are collected for Cigli district, including the level of air pollutants, the local natural gas service lines and planning decisions for the years between 2007 and 2011. According to the examinations, urban environmental factors and planning decisions affect the urban air quality in urban regeneration areas.© 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK. Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.Keywords: Urban air pollution; urban regeneration; quality of lif; environmental factors Introduction


2021 ◽  
Vol 7 (2) ◽  
pp. 253-267
Author(s):  
Beti Angelevska ◽  
Vaska Atanasova ◽  
Igor Andreevski

Air pollution is a cause for serious concerns in urban areas in Republic of North Macedonia. Intensive development of road transport increases the main air pollutants’ concentrations - particulate matter and nitrogen dioxide, whose monitored values are continuously exceeding the limit. The main disadvantage of the national plans and annual reports is the absence of comprehensive and categorized list of reduction/mitigation measures for road transport impacts on air quality. Analyzing the current air pollution problem and road transport contribution this paper provides the needed and detailed categorization of short-to-long term reduction/mitigation measures consisting of five subcategories. Based on measure categorization, a guiding frame for urban air quality is designed, intended for further support and assistance for local authorities in the process of air pollution control. Designed with integrated activities, the air quality guidance enables them to select suitable measures to manage road transport pollution and to evaluate their effects estimating the changes in air pollution levels. Hence, the guidance can be used for thorough planning of air quality issues caused by road transport and for policy making. Contributing for urban air quality improvement the guidance is a first step towards the implementation of air pollution management in urban areas. Doi: 10.28991/cej-2021-03091651 Full Text: PDF


2020 ◽  
Vol 13 (8) ◽  
pp. 4601-4617
Author(s):  
Bas Mijling

Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not well known due to the sparseness of official monitoring networks or unrealistic assumptions being made in urban-air-quality models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward because of the localized nature of air pollution and the large uncertainties associated with measurements of low-cost sensors. This study presents a practical approach to producing high-spatiotemporal-resolution maps of urban air pollution capable of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality model, driven by an open-source atmospheric-dispersion model and emission proxies from open-data sources, and (2) a practical spatial-interpolation scheme, capable of assimilating observations with different accuracies. The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy (defined as the ratio between the root mean square error and the mean of the observations) of 39 % within 2 km of an observation location and 53 % at larger distances. When low-cost measurements of the Urban AirQ campaign are included, the maps reveal more detailed concentration patterns in areas which are undersampled by the official network. It is shown that during the summer holiday period, NO2 concentrations drop about 10 %. The reduction is less in the historic city centre, while strongest reductions are found around the access ways to the tunnel connecting the northern and the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic flow is redirected to other main roads. Overall, it is shown that Retina can be applied for an enhanced understanding of reference measurements and as a framework to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas.


2017 ◽  
Vol 68 (4) ◽  
pp. 858-863
Author(s):  
Mihaela Oprea ◽  
Marius Olteanu ◽  
Radu Teodor Ianache

Fine particulate matter with a diameter less than 2.5 �m (i.e. PM2.5) is an air pollutant of special concern for urban areas due to its potential significant negative effects on human health, especially on children and elderly people. In order to reduce these effects, new tools based on PM2.5 monitoring infrastructures tailored to specific urban regions are needed by the local and regional environmental management systems for the provision of an expert support to decision makers in air quality planning for cities and also, to inform in real time the vulnerable population when PM2.5 related air pollution episodes occur. The paper focuses on urban air pollution early warning based on PM2.5 prediction. It describes the methodology used, the prediction approach, and the experimental system developed under the ROKIDAIR project for the analysis of PM2.5 air pollution level, health impact assessment and early warning of sensitive people in the Ploiesti city. The PM2.5 concentration evolution prediction is correlated with PM2.5 air pollution and health effects analysis, and the final result is processed by the ROKIDAIR Early Warning System (EWS) and sent as a message to the affected population via email or SMS. ROKIDAIR EWS is included in the ROKIDAIR decision support system.


1997 ◽  
Vol 31 (10) ◽  
pp. 1497-1511 ◽  
Author(s):  
N. Moussiopoulos ◽  
P. Sahm ◽  
K. Karatzas ◽  
S. Papalexiou ◽  
A. Karagiannidis

Sign in / Sign up

Export Citation Format

Share Document