Reconstructing the pre–Variscan puzzle of Cambro–Ordovician basement rocks in the western Mediterranean region of Gondwana

Author(s):  
Cecilio Quesada ◽  
José Javier Álvaro ◽  
Josep Maria Casas

<p>In today’s western Mediterranean region, Variscan and Alpine thrusts and shear zones combine to hamper a correct identification and palinspastic reconstruction of Cambro-Ordovician sequences. However, gap-related stratigraphic, climatically sensitive facies associations, sedimentary, volcanosedimentary, biogeographic, biodiversity and detrital zircon data mainly made available during the last two decades allow envisaging a new palaeogeographic scenario by linking proximal-to-distal transects across the western and eastern branches of the Ibero-Armorican Arc. Variscan parautochthonous and autochthonous domains are represented palaeogeographically by, from SW to NE: (i) the Central Iberian, West Asturian-Leonese and Cantabrian zones of the Iberian Massif and their laterally correlative Central Armorican Domain, fringed marginally by the Ossa-Morena and North Armorican thinned outer margin of Gondwana, reminiscent of the rift axis during the Cambrian; and (ii) the southeastern Pyrenees, Occitan and SW Sardinia domains, fringed marginally by the slope-to-basinal South Armorican, Thiviers-Payzac, Albigeois and northeastern Pyrenees domains. These proximal-to distal transects of West Gondwana record a diachronous SW-to-NE migration of evaporites, phosphorites and maximum peak of trilobite diversity, related to the counter-clockwise migration of the Gondwana supercontinent, supported by a gradual modification of detrital zircon provenance. Both branches of the Ibero-Armorican Arc also display a diachronous migration of Cambro-Ordovician rift-to-drift conditions associated with distinct igneous manifestations (volcanosedimentary and plutonic). This migration is related to the development of the Furongian (Toledanian) to Mid-Late Ordovician (Sardic) geodynamic events, in response to gap-related thermal doming, subaerial denudation and magmatic activity evolving from calc-alkaline to tholeiitic affinity.</p>

The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Yassin Meklach ◽  
Chantal Camenisch ◽  
Abderrahmane Merzouki ◽  
Ricardo Garcia Herrera

Archival records and historical documents offer direct observation of weather and atmospheric conditions and have the highest temporal and spatial resolution, and precise dating, of the available climate proxies. They also provide information about variables such as temperature, precipitation and climate extremes, as well as floods, droughts and storms. The present work studied Arab-Islamic documentary sources covering the western Mediterranean region (documents written by Arab-Islamic historians that narrate social, political and religious history) available for the period AD 680–1815. They mostly provide information on hydrometeorological events. In Iberia the most intense droughts were reported during AD 747–753, AD 814–822, AD 846–847, AD 867–874 and AD 914–915 and in the Maghreb AD 867–873, AD 898–915, AD 1104–1147, AD 1280–1340 and AD 1720–1815 had prevalent drought conditions. Intense rain episodes are also reported.


2021 ◽  
Author(s):  
Anas Abbassi ◽  
Paola Cipollari ◽  
Maria Giuditta Fellin ◽  
Mohamed Najib Zaghloul ◽  
Marcel Guillong ◽  
...  

<p>During the Tertiary evolution of the Western Mediterranean subduction system, the orogenic accretion at the Maghrebian margin let the stacking of three main tectonic zones of the Rif fold-and-thrust belt: 1) the Internal Zone; 2) the “Maghrebian Flysch” Nappes; and 3) the  External Zone. In this context, a migrating foreland basin system developed between the Maghrebian orogenic belt and the adjacent African Craton. </p><p>A comprehensive reconstruction of the foreland basin system of the Rif Chain for each phase of its accretional history is still missing. In this work, by integrating field observations with quantitative biostratigraphic data from calcareous nannofossils assemblages, sandstone composition, and detrital zircon U-Pb geochronology from selected stratigraphic successions, we reconstruct the foreland basin system that in the early Miocene developed in front of the growing Rif orogen. The analyzed successions are representative of (1) the “Beliounis Facies”, made of quartz-arenites and litharenites (Numidian-like “mixed succession”), from the Predorsalian Unit; (2) the “Mérinides Facies”, made of a Numidian-like “mixed succession”, from the “Maghrebian Flysch Basin”; and (3) the classical “Numidian Facies”, exclusively made of quartzarenites, from the Intrarifian Tanger Unit.</p><p>The petrographic analyses and the detrital zircon U-Pb ages show the provenance of the quartzarenites of the “Numidian Facies” from the African Craton, whereas the sublitharenites and feldspathic litharenites, of both the “Mérinides Facies” and “Beliounis Facies”, show provenance from a cratonic area and the growing and unroofing Rif Chain, respectively. </p><p>The Alpine signature of the detrital grains sedimented into the foredeep deposits of the early Miocene orogenic system of the Rif Chain is from the feldspathic litharenites of both the Mérinides Facies and the Beni Ider Flysch. Both show Mesozoic and Cenozoic U-Pb zircon populations, with a large population of zircons centered at ca. 32 Ma. The U and Th concentration, the Th/U ratio, and the REE pattern of this population of zircons suggest a possible source area from Oligocene doleritic rock intrusions, similar to the magmatic dyke swarms (diorite) cropping out in the Malaga region ( SE Spain).</p><p>The biostratigraphic analyses pinpoint the same age for the arrival of the quartz grains in the Numidian, Mérinides, and Beliounis deposits, indicating about 1 Myr for their sedimentation (ca. 20-19 Ma, early Burdigalian). Together with field evidence, the biostratigraphic results point to an autochthonous deposition of the Numidian Sandstones on top of the Tanger Unit, allowing to delineate the early Burdigalian foreland basin system of the Rif Chain. The foreland depozone involved the Tanger Unit and received the “Numidian Facies” deposits ; the foredeep depozone hosted about 2000 m of the “Mérinides Facies” and the Beni Ider Flysch, and developed on the so-called “Flysch Basin Domain”; and, finally, the wedge-top depozone, characterized by the “Beliounis Facies”, developed on top of the Predorsalian Unit.</p><p>The Numidian Sandstones and the Numidian-like deposits analyzed in Morocco show the same age of similar deposits from Algeria, Tunisia, and Sicily, suggesting a comparable early Burdigalian tectono-sedimentary evolution along the southern branch of the Western Mediterranean subduction-related orogen.</p>


2020 ◽  
Vol 113 ◽  
pp. 104121 ◽  
Author(s):  
E. Mantovani ◽  
M. Viti ◽  
D. Babbucci ◽  
C. Tamburelli ◽  
N. Cenni

2019 ◽  
Vol 132 (7-8) ◽  
pp. 1404-1418 ◽  
Author(s):  
Ya-Jun Xu ◽  
Peter A. Cawood ◽  
Hang-Chuan Zhang ◽  
Jian-Wei Zi ◽  
Jin-Bo Zhou ◽  
...  

Abstract New age data for the Baoban Complex, South China establishes that it lay outboard of western Laurentia in the early Mesoproterozoic but was not part of the Cathaysia Block, with which it is traditional linked, until the mid-Paleozoic. Our geochronology data for detrital zircon and authigenic monazite grains from metasedimentary rocks indicate accumulation between ca. 1.55 Ga and 1.45 Ga for the Gezhencun succession of the Baoban Complex and ca. 1.45 Ga and 1.30 Ga for the Ewenling succession. The former unit is dominated by detrital zircon populations between 1900 Ma and 1500 Ma with two peaks at 1780 Ma and 1580 Ma. The Ewenling succession has detrital zircon peaks at 1720 Ma and 1450 Ma. Newly discovered gneissic granites were emplaced at 1550 Ma and intruded by 1450 Ma leucogranite dykes that are coeval with 1460–1430 Ma bimodal magmatism. The whole Baoban Complex was metamorphosed over the range of 1.3–0.9 Ga based on ages of authigenic zircon and monazite. Depositional ages of metasedimentary rocks are coeval with successions of the Belt-Purcell Basin, western Laurentia. Detrital zircon from the two regions have similar age populations and Lu-Hf compositions, and display a synchronous provenance shift at ca. 1.45 Ga. Basement lithologies on Hainan Island range in age from ca. 1.55–1.43 Ga and underwent metamorphism during 1.3–0.9 Ga. This is younger than basement rocks on the mainland of the Cathaysia Block in South China, suggesting the two regions are spatially unrelated at this time and hence the Mesoproterozoic record of the island cannot constrain the location of the Cathaysia Block in the Nuna and Rodinia supercontinents.


Plant Biology ◽  
2011 ◽  
Vol 13 (2) ◽  
pp. 391-400 ◽  
Author(s):  
C. Quintela-Sabarís ◽  
G. G. Vendramin ◽  
D. Castro-Fernández ◽  
M. Isabel Fraga

2019 ◽  
Vol 54 (1) ◽  
pp. 19-32
Author(s):  
Jeffrey M. Amato

ABSTRACT U-Pb ages were obtained from detrital zircon grains from Proterozoic, Ordovician, Devonian, Pennsylvanian, and Cretaceous clastic sedimentary rocks in southern New Mexico and are compared to previously published data from Proterozoic, Cambrian, Permian, and other Cretaceous strata. This provides the first combined data set from most of the known pre-Cenozoic clastic formations in southern New Mexico, albeit in a reconnaissance fashion. Proterozoic quartzite, conglomerate, and lithic sandstone yield mostly 1.65-Ga zircon ages that were derived from the Mazatzal province, with minor 1.8–1.7-Ga zircon ages from the Yavapai province. The Cambrian–Ordovician Bliss Sandstone is dominated by Grenville-age grains and Cambrian grains inferred to be locally derived. Newly acquired ages from the Ordovician Cable Canyon Sandstone are dominated by 1.7–1.6-Ga Mazatzal province zircon grains, whereas new data from the Devonian Percha Shale indicate subequal contributions from 1.7–1.6-Ga and ~1.4-Ga sources, along with 1.8–1.7-Ga zircon ages. Both of these formations likely had mainly distal sources as the Precambrian basement in the region was largely buried by older Paleozoic strata. New data from a sandstone in the Pennsylvanian La Tuna Formation show mostly Yavapai grains and minor Paleozoic zircon grains, including Cambrian zircon grains sourced from the nearby Florida Mountains landmass postulated to have been exposed during Pennsylvanian time. The Permian ‘Abo tongue’/Robledo Mountains Formation of the Hueco Group has mostly Neoproterozoic and Grenville-age zircon grains and was derived from Ancestral Rocky Mountain uplifts that did not have a large ~1.4-Ga component. The Aptian Hell-to-Finish Formation of the Bisbee Group has mostly Yavapai-aged zircon grains in the pre-1000-Ma age group, but younger Albian- and Campanian-age sandstones have mostly Grenville-age zircon grains. New data from the Albian Beartooth Quartzite indicate syndepositional volcanic grains at 102 Ma and support correlations with the Mojado Formation rather than the younger Dakota Sandstone. Archean zircon ages are rare overall in all of the strata in southern New Mexico, but zircon grains with ages of ~2.74 Ga are most abundant. These grains could have been derived from basement rocks in the Wyoming or Superior provinces, or recycled from sediment originally derived from those sources.


Sign in / Sign up

Export Citation Format

Share Document