Clock networks and their sensibility to time-variable gravity signals

Author(s):  
Hu Wu ◽  
Jürgen Müller

<p>High-performance clock networks are considered as a novel tool in geodesy. Today the latest generation of optical clocks approaches a fractional frequency uncertainty of 1.0x10<sup>-18</sup>, which corresponds to about 1.0 cm in height or 0.1 m<sup>2</sup>/s<sup>2</sup> in geopotential. The connected clocks are thus promising to enable “relativistic geodesy” in practice: Gravity potential (or height) differences can be inferred through the ultra-precise comparison of clocks’ frequencies.</p><p>In this study, we will investigate the possibility of high-performance clock networks for detecting time-variable gravity signals. In the past two decades, the satellite gravity mission GRACE, now continued by its follow-on mission, has significantly improved our knowledge on the Earth’s gravity field, especially on its changes over time. However, the results are limited in terms of spatial resolution (about a few hundreds of kilometers) and temporal resolution (standard is one month). Terrestrial clock networks can be used to observe point-wise gravity potential values at locations of interest. By continuously tracking of changes w.r.t. a reference clock, time-series of gravity potential values are obtained, which reveal the gravity variations at these locations. To elaborate this idea, we will address the following research questions:</p><ul><li>Are clock measurements with the accuracy of 10<sup>-18</sup> sensitive enough to time-variable gravity signals? Or what is the requirement on the clock’s performance for detecting time-variable gravity signals?</li> <li>Which kinds of time-variable signals can be “seen” by clocks, the long-term trends (yearly), seasonal variations or short-term changes (weekly/daily)?</li> <li>In which regions might clock networks be sensitive to time-variable gravity signals, in Amazon, Greenland or also in Europe?</li> <li>An “absolute” reference clock is required for a network that should be least affected by gravity variations. Where should it be placed?</li> </ul><p>We gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2123 “QuantumFrontiers” (Project-ID: 390837967). This work is also funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 434617780 – SFB 1464.</p>

2021 ◽  
Vol 13 (16) ◽  
pp. 3075
Author(s):  
Ming Xu ◽  
Xiaoyun Wan ◽  
Runjing Chen ◽  
Yunlong Wu ◽  
Wenbing Wang

This study compares the Gravity Recovery And Climate Experiment (GRACE)/GRACE Follow-On (GFO) errors with the coseismic gravity variations generated by earthquakes above Mw8.0s that occurred during April 2002~June 2017 and evaluates the influence of monthly model errors on the coseismic signal detection. The results show that the precision of GFO monthly models is approximately 38% higher than that of the GRACE monthly model and all the detected earthquakes have signal-to-noise ratio (SNR) larger than 1.8. The study concludes that the precision of the time-variable gravity fields should be improved by at least one order in order to detect all the coseismic gravity signals of earthquakes with M ≥ 8.0. By comparing the spectral intensity distribution of the GFO stack errors and the 2019 Mw8.0 Peru earthquake, it is found that the precision of the current GFO monthly model meets the requirement to detect the coseismic signal of the earthquake. However, due to the limited time length of the observations and the interference of the hydrological signal, the coseismic signals are, in practice, difficult to extract currently.


2021 ◽  
Vol 13 (9) ◽  
pp. 1766
Author(s):  
Igor Koch ◽  
Mathias Duwe ◽  
Jakob Flury ◽  
Akbar Shabanloui

During its science phase from 2002–2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s time-variable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO-2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.


2021 ◽  
Author(s):  
Waldemar Herr ◽  
Nina Heine ◽  
Marat Musakaev ◽  
Sven Abend ◽  
Ludger Timmen ◽  
...  

<p>The transportable Quantum Gravimeter QG-1 is designed to determine the local gravity to the nm/s² level of uncertainty. It relies on the interferometric interrogation of magnetically collimated Bose-Einstein condensates in a transportable setup consisting of a sensor head and an electronics supply unit.<br>In this contibution we introduce the measurement concept and discuss it's impact on the measurement uncertainty. We are reporting on the first gravity data taken with the device over the course of three days thereby validating the operability and the measurement concept applied in QG-1.<br>We acknowledge financial support from "Niedersachsisches Vorab" through "Förderung von Wissenschaft und Technik in Forschung und Lehre" for the initial funding of research in the new DLR-SI Institute. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC-2123 QuantumFrontiers - 390837967 and under Project-ID 434617780 - SFB 1464.</p>


2009 ◽  
Vol 83 (10) ◽  
pp. 903-913 ◽  
Author(s):  
J. Kusche ◽  
R. Schmidt ◽  
S. Petrovic ◽  
R. Rietbroek

2021 ◽  
Author(s):  
Ulrich Meyer ◽  
Martin Lasser ◽  
Adrian Jäggi ◽  
Christoph Dahle ◽  
Frank Flechtner ◽  
...  

<p>The Combination Service for Time-variable Gravity Fields (COST-G) of the International Association of Geodesy (IAG) provides combined monthly gravity fields of its associated and partner Analysis Centers (ACs). In November 2020, the combination of monthly GRACE-FO gravity fields started its operational mode, providing consolidated L2 (spherical harmonics) and L3 (gridded and post- processed) products with a latency of currently 3 months. We present an overview and quality assessment of the available products.</p><p>COST-G aims at the extension of its service to include further GRACE and GRACE-FO analysis centers. In January 2020 a collaboration with representatives of five Chinese ACs was initiated, who provided GRACE time-series according to the COST-G requirements. We present the results of a test combination with the Chinese AC models, including comparison and quality assessment of all contributing time-series and validation of the combined gravity fields.</p>


2020 ◽  
Author(s):  
Ulrich Meyer ◽  
Martin Lasser ◽  
Adrian Jäggi ◽  
Frank Flechtner ◽  
Christoph Dahle ◽  
...  

<p lang="en-US">We present the operational GRACE-FO combined time-series of monthly gravity fields of the Combination Service for Time-variable Gravity fields (COST-G) of the International Association of Geodesy (IAG). COST-G_GRACE-FO_RL01_operational is combined at AIUB and relies on operational monthly solutions of the COST-G Analysis Centers GFZ, GRGS, IfG, LUH and AIUB and the associated Analysis Centers CSR and JPL. All COST-G Analysis Centers have passed a benchmark test to ensure consistency between the different processing approaches and all of the contributing time-series undergo a strict quality control focusing on the signal content in river basins and polar regions with pronounced changes in ice mass to uncover any regularization that may bias the combination.</p> <p lang="en-US">The combination is performed by variance component estimation on the solution level, the relative monthly weights thus providing valuable and independent insight into the consistency and noise levels of the individual monthly contributions. The combined products then are validated internally in terms of noise, approximated by the non-secular, non-seasonal variability over the oceans. Once they have passed this quality control the combined gravity fields are assessed by an external board of experts who evaluate them in terms of orbit predictions, lake altimetry, river hydrology or oceanography.</p>


Sign in / Sign up

Export Citation Format

Share Document