In-situ hydro-meteorological records in conjunction with stable isotope systematics to understand the hydrological processes in Glaciers of Garhwal Himalaya, India

Author(s):  
Amit Kumar ◽  
Akshaya Verma ◽  
Sameer K Tiwari ◽  
Santosh K Rai

<p>Glaciers in the Indian Himalayan Region (IHR) are sensitive to climatic changes. Rivers originating from Himalaya have higher water yields in the ablation season due to large inputs from the melting of snow and glaciers, which is critical for sustaining downstream ecosystem, agricultural practices, hydroelectric power generation, and urban water supplies. Integrated investigations are frequently unavailable at a regional scale over a longer period, which is hampered due to the non-availability of data caused by harsh weather conditions, difficult terrain, as well as difficulty in maintaining the instruments at such high altitudes (> 3000 m asl). The hydrological understanding of melting processes from glacierized basins requires a network of reliable meteorological and hydrological observations. In absence of such reliable meteorological data, most of the hydrological simulation studies are forced to extrapolate air temperature from nearby basins, lower elevations, or consider satellite-based observations, which often deviate or differ from the actual ground conditions and lead to large uncertainty in model outputs. Therefore, an integrated approach for collecting hydrological and meteorological data along with other data like snow-cover, suspended sediment transfer and stable isotopic signatures of different components of the hydrograph were conceptualized for glacierized river basins in Garhwal Himalaya (Bhagirathi and Alaknanda). Our results suggest that the annual distribution of temperature lapse rates (TLR) established exhibits a bimodal pattern and the TLR’s are significantly lower than the adiabatic lapse rate. The major components of the streamflow are derived from snow and glacier melt, while rainfall contributes little during the Indian Summer Monsoon (ISM). Westerlies significantly feed the glacier with snow, while rainfall is dominant during the Indian Summer Monsoon (ISM). Precipitation and temperature are the dominant meteorological factors controlling melting processes and sediment delivery. Climate and topography control the distribution of seasonal snow cover/ snowline in the region. Extreme events like heavy rainfall, flash floods, glacial lake outbursts floods, etc. can be traced using hydrometeorological and isotopic data at high altitude stations. Therefore, in light of the challenges and potential research gaps, the study produces actionable knowledge in the Garhwal Himalaya for better understanding and modeling of glacio-hydrological processes by incorporating ground-based observations.</p>

2009 ◽  
Vol 10 (6) ◽  
pp. 1447-1463 ◽  
Author(s):  
A. Langlois ◽  
J. Kohn ◽  
A. Royer ◽  
P. Cliche ◽  
L. Brucker ◽  
...  

Abstract Snow cover plays a key role in the climate system by influencing the transfer of energy and mass between the soil and the atmosphere. In particular, snow water equivalent (SWE) is of primary importance for climatological and hydrological processes and is a good indicator of climate variability and change. Efforts to quantify SWE over land from spaceborne passive microwave measurements have been conducted since the 1980s, but a more suitable method has yet to be developed for hemispheric-scale studies. Tools such as snow thermodynamic models allow for a better understanding of the snow cover and can potentially significantly improve existing snow products at the regional scale. In this study, the use of three snow models [SNOWPACK, CROCUS, and Snow Thermal Model (SNTHERM)] driven by local and reanalysis meteorological data for the simulation of SWE is investigated temporally through three winter seasons and spatially over intensively sampled sites across northern Québec. Results show that the SWE simulations are in agreement with ground measurements through three complete winter seasons (2004/05, 2005/06, and 2007/08) in southern Québec, with higher error for 2007/08. The correlation coefficients between measured and predicted SWE values ranged between 0.72 and 0.99 for the three models and three seasons evaluated in southern Québec. In subarctic regions, predicted SWE driven with the North American Regional Reanalysis (NARR) data fall within the range of measured regional variability. NARR data allow snow models to be used regionally, and this paper represents a first step for the regionalization of thermodynamic multilayered snow models driven by reanalysis data for improved global SWE evolution retrievals.


2017 ◽  
Vol 30 (4) ◽  
pp. 1273-1289 ◽  
Author(s):  
Subhadeep Halder ◽  
Paul A. Dirmeyer

Abstract This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 954
Author(s):  
Katherine Power ◽  
Josefine Axelsson ◽  
Norbu Wangdi ◽  
Qiong Zhang

The Indian Summer Monsoon (ISM) plays a vital role in the livelihoods and economy of those living on the Indian subcontinent, including the small, mountainous country of Bhutan. The ISM fluctuates over varying temporal scales and its variability is related to many internal and external factors including the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In 2015, a Super El Niño occurred in the tropical Pacific alongside a positive IOD in the Indian Ocean and was followed in 2016 by a simultaneous La Niña and negative IOD. These events had worldwide repercussions. However, it is unclear how the ISM was affected during this time, both at a regional scale over the whole ISM area and at a local scale over Bhutan. First, an evaluation of data products comparing ERA5 reanalysis, TRMM and GPM satellite, and GPCC precipitation products against weather station measurements from Bhutan, indicated that ERA5 reanalysis was suitable to investigate ISM change in these two years. The reanalysis datasets showed that there was disruption to the ISM during this period, with a late onset of the monsoon in 2015, a shifted monsoon flow in July 2015 and in August 2016, and a late withdrawal in 2016. However, this resulted in neither a monsoon surplus nor a deficit across both years but instead large spatial-temporal variability. It is possible to attribute some of the regional scale changes to the ENSO and IOD events, but the expected impact of a simultaneous ENSO and IOD events are not recognizable. It is likely that 2015/16 monsoon disruption was driven by a combination of factors alongside ENSO and the IOD, including varying boundary conditions, the Pacific Decadal Oscillation, the Atlantic Multi-decadal Oscillation, and more. At a local scale, the intricate topography and orographic processes ongoing within Bhutan further amplified or dampened the already altered ISM.


2017 ◽  
Vol 13 (5) ◽  
pp. 491-509 ◽  
Author(s):  
Philipp M. Munz ◽  
Stephan Steinke ◽  
Anna Böll ◽  
Andreas Lückge ◽  
Jeroen Groeneveld ◽  
...  

Abstract. The Indian summer monsoon (ISM) is an important conveyor in the ocean–atmosphere coupled system on a trans-regional scale. Here we present a study of a sediment core from the northern Oman margin, revealing early to mid-Holocene ISM conditions on a near-20-year resolution. We assess multiple independent proxies indicative of sea surface temperatures (SSTs) during the upwelling season together with bottom-water conditions. We use geochemical parameters, transfer functions of planktic foraminiferal assemblages and Mg /  Ca palaeothermometry, and find evidence corroborating previous studies showing that upwelling intensity varies significantly in coherence with solar sunspot cycles. The dominant  ∼  80–90-year Gleissberg cycle apparently also affected bottom-water oxygen conditions. Although the interval from 8.4 to 5.8 ka BP is relatively short, the gradually decreasing trend in summer monsoon conditions was interrupted by short events of intensified ISM conditions. Results from both independent SST proxies are linked to phases of weaker oxygen minimum zone (OMZ) conditions and enhanced carbonate preservation. This indicates that atmospheric forcing was intimately linked to bottom-water properties and state of the OMZ on decadal timescales.


Sign in / Sign up

Export Citation Format

Share Document