Inventory and genesis of glacial lakes in Switzerland since the Little Ice Age

Author(s):  
Nico Mölg ◽  
Christian Huggel ◽  
Thilo Herold ◽  
Florian Storck ◽  
Simon Allen ◽  
...  

<p>The deglaciation since the end of the Little Ice Age (LIA, ~1850) has given way to >700km² of “new” landscape in Switzerland. Glacial lakes are a conspicuous feature of this new landscape – with relevance for natural hazards, hydropower and landscape planning. In this study, we compiled an inventory of glacial lakes for Switzerland for the year 2016. Using existing data, we investigated the evolution of glacial lakes in Switzerland for six time periods since the LIA. Additionally, we compiled information constituting a basis for hazard assessment for all ice-contact lakes in 2016 and all lakes >0.5 ha, i.e. surface outflow, dam type and material, and lake freeboard.</p><p>We found that a total of 1230 lakes formed over the period of ~170 years, 982 still existing in 2016. The largest lakes are >0.4 km² (40 ha) in size, while the majority (>90%) are smaller than 0.01 km². Annual increase rates in area and number peaked in 1946-1973, decreased towards the end of the 20<sup>th</sup> century, and reached a new high in the latest period 2006-2016. For a period of 43 years, we compared modelled overdeepenings from previous studies to actual lake genesis. For a better prioritisation of formation probability, we included glacier-morphological criteria such as glacier width and visible crevassing. About 40% of the modelled overdeepened area actually filled with water. The inclusion of morphological aspects clearly aided in linking a lake formation probability to a modelled overdeepening.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.d3501255f60064578601161/sdaolpUECMynit/12UGE&app=m&a=0&c=a53c560cf096fb15e526d1d230f3d1bf&ct=x&pn=gnp.elif&d=1" alt="" width="381" height="225"></p><p>Fig. 1: Glacial lake distribution in Switzerland and its evolution over time. </p>

Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2018 ◽  
Vol 164 ◽  
pp. 39-51 ◽  
Author(s):  
J. Buckel ◽  
J.C. Otto ◽  
G. Prasicek ◽  
M. Keuschnig
Keyword(s):  
Ice Age ◽  

Author(s):  
Nico Mölg ◽  
Christian Huggel ◽  
Thilo Herold ◽  
Florian Storck ◽  
Simon Allen ◽  
...  
Keyword(s):  
Ice Age ◽  

2021 ◽  
Author(s):  
Dounia Saleh ◽  
Jun Chen ◽  
Jean-Charles Leple ◽  
Thibault Leroy ◽  
Laura Truffaut ◽  
...  

The pace of tree microevolution during Anthropocene warming is largely unknown. We used a retrospective approach to monitor genomic changes in oak trees since the Little Ice Age (LIA). Allelic frequency changes were assessed from whole-genome pooled sequences for four age-structured cohorts of sessile oak (Quercus petraea) dating back to 1680, in each of three different oak forests in France. The genetic covariances of allelic frequency changes increased between successive time periods, highlighting genome-wide effects of linked selection. We found imprints of convergent linked selection in the three forests during the late LIA, and a shift of selection during more recent time periods. The changes in allelic covariances within and between forests mirrored the documented changes in the occurrence of extreme events (droughts and frosts) over the last three hundred years. The genomic regions with the highest covariances were enriched in genes involved in plant responses to pathogens and abiotic stresses (temperature and drought). These responses are consistent with the reported sequence of frost (or drought) and disease damage ultimately leading to the oak dieback after extreme events. Our results therefore provide evidence of selection operating on long-lived species during recent climatic changes.


2013 ◽  
Vol 59 (213) ◽  
pp. 149-161 ◽  
Author(s):  
Barbara L. Trüssel ◽  
Roman J. Motyka ◽  
Martin Truffer ◽  
Christopher F. Larsen

AbstractBoth lake-calving Yakutat Glacier (337 km2), Alaska, USA, and its parent icefield (810 km2) are experiencing strong thinning, and under current climate conditions will eventually disappear. Comparison of digital elevation models shows that Yakutat Glacier thinned at area-averaged rates of 4.76 ± 0.06 m w.e.a−1 (2000–07) and 3.66 ± 0.03 m w.e.a−1 (2007–10). Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.79 and 2.94 m w.e.a−1 respectively for the same time periods), indicating lake-calving dynamics helps drive increased mass loss. Yakutat Glacier terminates into Harlequin Lake and for over a decade sustained a ∼3 km long floating tongue, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. We hypothesize that this difference is likely due to the lack of submarine melting in the case of lake-calving glaciers. Floating-tongue ice losses were evaluated in terms of overall mass balance and contribution to sea-level rise. The post-Little Ice Age collapse of Yakutat Icefield was driven in part by tidewater calving retreats of adjacent glaciers, the lake-calving retreat of Yakutat Glacier, a warming climate and by the positive feedback mechanisms through surface lowering.


2022 ◽  
Author(s):  
Iwo Wieczorek ◽  
Mateusz Czesław Strzelecki ◽  
Łukasz Stachnik ◽  
Jacob Clement Yde ◽  
Jakub Małecki

Abstract. Rapid changes of glacial lakes are among the most visible indicators of global warming in glacierized areas around the world. The general trend is that the area and number of glacial lakes increase significantly in high mountain areas and polar latitudes. However, there is a lack of knowledge about the current state of glacial lakes in the High Arctic. This study aims to address this issue by providing the first glacial lake inventory from Svalbard, with focus on the genesis and evolution of glacial lakes since the end of the Little Ice Age. We use aerial photographs and topographic data from 1936 to 2012 and satellite imagery from 2013 to 2020. The inventory includes the development of 566 glacial lakes (total area of 145.91 km2) that were in direct contact with glaciers in 2008–2012. From the 1990s to the end of the 2000s, the total glacial lake area increased by nearly a factor of six. A decrease in the number of lakes between 2012 and 2020 is related to two main processes: the drainage of 197 lakes and the merger of smaller reservoirs into larger ones. The changes of glacial lakes show how climate change in the High Arctic affect proglacial geomorphology by enhanced formation of glacial lakes, leading to higher risks associated with glacier lake outburst floods in Svalbard.


2013 ◽  
Vol 6 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Anastasia Gornostayeva ◽  
◽  
Dmitry Demezhko ◽  
◽  
Keyword(s):  

2020 ◽  
Vol 42 (1) ◽  
pp. 4-12
Author(s):  
Valeriy Fedorov ◽  
Denis Frolov

Sign in / Sign up

Export Citation Format

Share Document