scholarly journals Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA

2013 ◽  
Vol 59 (213) ◽  
pp. 149-161 ◽  
Author(s):  
Barbara L. Trüssel ◽  
Roman J. Motyka ◽  
Martin Truffer ◽  
Christopher F. Larsen

AbstractBoth lake-calving Yakutat Glacier (337 km2), Alaska, USA, and its parent icefield (810 km2) are experiencing strong thinning, and under current climate conditions will eventually disappear. Comparison of digital elevation models shows that Yakutat Glacier thinned at area-averaged rates of 4.76 ± 0.06 m w.e.a−1 (2000–07) and 3.66 ± 0.03 m w.e.a−1 (2007–10). Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.79 and 2.94 m w.e.a−1 respectively for the same time periods), indicating lake-calving dynamics helps drive increased mass loss. Yakutat Glacier terminates into Harlequin Lake and for over a decade sustained a ∼3 km long floating tongue, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. We hypothesize that this difference is likely due to the lack of submarine melting in the case of lake-calving glaciers. Floating-tongue ice losses were evaluated in terms of overall mass balance and contribution to sea-level rise. The post-Little Ice Age collapse of Yakutat Icefield was driven in part by tidewater calving retreats of adjacent glaciers, the lake-calving retreat of Yakutat Glacier, a warming climate and by the positive feedback mechanisms through surface lowering.

2017 ◽  
Vol 63 (238) ◽  
pp. 288-308 ◽  
Author(s):  
ROMAN J. MOTYKA ◽  
RYAN CASSOTTO ◽  
MARTIN TRUFFER ◽  
KRISTIAN K. KJELDSEN ◽  
DIRK VAN AS ◽  
...  

ABSTRACTWe assess ice loss and velocity changes between 1985 and 2014 of three tidewater and five-land terminating glaciers in Godthåbsfjord (Nuup Kangerlua), Greenland. Glacier thinning accounted for 43.8 ± 0.2 km3 of ice loss, equivalent to 0.10 mm eustatic sea-level rise. An additional 3.5 ± 0.3 km3 was lost to the calving retreats of Kangiata Nunaata Sermia (KNS) and Narsap Sermia (NS), two tidewater glaciers that exhibited asynchronous behavior over the study period. KNS has retreated 22 km from its Little Ice Age (LIA) maximum (1761 AD), of which 0.8 km since 1985. KNS has stabilized in shallow water, but seasonally advects a 2 km long floating tongue. In contrast, NS began retreating from its LIA moraine in 2004–06 (0.6 km), re-stabilized, then retreated 3.3 km during 2010–14 into an over-deepened basin. Velocities at KNS ranged 5–6 km a−1, while at NS they increased from 1.5 to 5.5 km a−1 between 2004 and 2014. We present comprehensive analyses of glacier thinning, runoff, surface mass balance, ocean conditions, submarine melting, bed topography, ice mélange and conclude that the 2010–14 NS retreat was triggered by a combination of factors but primarily by an increase in submarine melting.


Author(s):  
W.P. De Lange

The Greenhouse Effect acts to slow the escape of infrared radiation to space, and hence warms the atmosphere. The oceans derive almost all of their thermal energy from the sun, and none from infrared radiation in the atmosphere. The thermal energy stored by the oceans is transported globally and released after a range of different time periods. The release of thermal energy from the oceans modifies the behaviour of atmospheric circulation, and hence varies climate. Based on ocean behaviour, New Zealand can expect weather patterns similar to those from 1890-1922 and another Little Ice Age may develop this century.


2014 ◽  
Vol 10 (5) ◽  
pp. 1857-1869 ◽  
Author(s):  
L.-C. Wang ◽  
H. Behling ◽  
T.-Q. Lee ◽  
H.-C. Li ◽  
C.-A. Huh ◽  
...  

Abstract. We reconstructed paleoenvironmental changes from a sediment archive of a lake in the floodplain of the Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated past floods, typhoons, and agricultural activities in this area which are sensitive to the hydrological conditions in the western Pacific. Considering the high sedimentation rates with low microfossil preservations in our sedimentary record, multiple flood events were. identified during the period AD 100–1400. During the Little Ice Age phase 1 (LIA 1 – AD 1400–1620), the abundant occurrences of wetland plant (Cyperaceae) and diatom frustules imply less flood events under stable climate conditions in this period. Between AD 500 and 700 and the Little Ice Age phase 2 (LIA 2 – AD 1630–1850), the frequent typhoons were inferred by coarse sediments and planktonic diatoms, which represented more dynamical climate conditions than in the LIA 1. By comparing our results with the reconstructed changes in tropical hydrological conditions, we suggested that the local hydrology in NE Taiwan is strongly influenced by typhoon-triggered heavy rainfalls, which could be influenced by the variation of global temperature, the expansion of the Pacific warm pool, and the intensification of El Niño–Southern Oscillation (ENSO) events.


2018 ◽  
Vol 44 (1) ◽  
pp. 7 ◽  
Author(s):  
M. Oliva

The Little Ice Age (LIA) constitutes the coldest period of the last millennia in Europe. A wide range of natural and historical records show evidence of colder climate conditions between the 14th and 19th centuries, together with a higher frequency of extreme hydroclimatic events. During these centuries, temperatures and precipitations showed different spatio-temporal patterns across Europe. This Special Issue includes eleven scientific works focusing on the climate regime, environmental dynamics as well as socio-economic implications of the LIA in Europe. Besides, this paper also identifies key guidelines for future research on the LIA causes and its consequences on environmental systems in the European continent.


2021 ◽  
Author(s):  
Bethan Davies ◽  
Jacob Bendle ◽  
Robert McNabb ◽  
Jonathan Carrivick ◽  
Christopher McNeil ◽  
...  

<p>The Alaskan region (comprising glaciers in Alaska, British Columbia and Yukon) contains the third largest ice volume outside of the Greenland and Antarctic ice sheets, and contributes more to global sea level rise than any other glacierised region defined by the Randolph Glacier Inventory. However, ice loss in this area is not linear, but in part controlled by glacier hypsometry as valley and outlet glaciers are at risk of becoming detached from their accumulation areas during thinning. Plateau icefields, such as Juneau Icefield in Alaska, are very sensitive to changes in Equilibrium Line Altitude (ELA) as this can result in rapidly shrinking accumulation areas. Here, we present detailed geomorphological mapping around Juneau Icefield and use this data to reconstruct the icefield during the “Little Ice Age”. We use topographic maps, archival aerial photographs, high-resolution satellite imagery and digital elevation models to map glacier lake and glacier area and volume change from the Little Ice Age to the present day (1770, 1948, 1979, 1990, 2005, 2015 and 2019 AD). Structural glaciological mapping (1979 and 2019) highlights structural and topographic controls on non-linear glacier recession.  Our data shows pronounced glacier thinning and recession in response to widespread detachment of outlet glaciers from their plateau accumulation areas. Glacier detachments became common after 2005, and occurred with increasing frequency since then. Total summed rates of area change increased eightfold from 1770-1948 (-6.14 km<sup>2</sup> a<sup>-1</sup>) to 2015-2019 (-45.23 km<sup>2</sup> a<sup>-1</sup>). Total rates of recession were consistent from 1770 to 1990 AD, and grew increasingly rapid after 2005, in line with regional warming.</p>


2014 ◽  
pp. 145-155 ◽  
Author(s):  
Abdolmajid Naderi Beni ◽  
Hamid Lahijani ◽  
Morsen Pourkerman ◽  
Rahman Jokar ◽  
Muna Hosseindoust ◽  
...  

2009 ◽  
Vol 3 (2) ◽  
pp. 231-243 ◽  
Author(s):  
S. Baumann ◽  
S. Winkler ◽  
L. M. Andreassen

Abstract. The maximum glacier extent during the "Little Ice Age" (mid 18th century AD) in Jotunheimen, southern Norway, was mapped using remote sensing techniques. Interpretation of existing glaciochronological studies, analysis of geomorphological maps, and own GPS-field measurements were applied for validation of the mapping. The length of glacier centrelines and other inventory data were determined using a Geographical Information System (GIS) and a Digital Elevation Model. "Little Ice Age" maximum extent for a total of 233 glaciers comprising an overall glacier area of about 290 km2 was mapped. Mean length of the centreline was calculated to 1.6 km. Until AD 2003, the area and length shrank by 35% and 34%, respectively, compared with the maximum "Little Ice Age" extent.


2020 ◽  
Vol 12 (4) ◽  
pp. 630
Author(s):  
Maciej Dąbski ◽  
Anna Zmarz ◽  
Mirosław Rodzewicz ◽  
Małgorzata Korczak-Abshire ◽  
Izabela Karsznia ◽  
...  

The aim of this article is to show geomorphological mapping of remote Antarctic locations using images taken by a fixed-wing unmanned aerial vehicle (UAV) during the Beyond Visual Line of Sight (BVLOS) operations. We mapped landform assemblages developed in forelands of Ecology Glacier (EGF), Sphinx Glacier (SGF) and Baranowski Glacier (BGF) in Antarctic Specially Protected Area No. 128 (ASPA 128) on King George Island (South Shetland Islands) and inferred about glacial dynamics. The orthophoto and digital elevation model allowed for geomorphological mapping of glacial forelands, including (i) glacial depositional landforms, (ii) fluvial and fluvioglacial landforms, (iii) littoral and lacustrine landforms, (iv) bodies of water, and (v) other. The largest area is occupied by ground moraine and glacial lagoons on EGF and BGF. The most profound features of EGF are the large latero-frontal moraine ridges from Little Ice Age and the first half of the 20th century. Large areas of ground moraine, frequently fluted and marked with large recessional moraine ridges, dominate on SGF. A significant percentage of bedrock outcrops and end moraine complexes characterize BGF. The landform assemblages are typical for discontinuous fast ice flow of tidewater glaciers over a deformable bed. It is inferred that ice flow velocity decreased as a result of recession from the sea coast, resulting in a significant decrease in the length of ice cliffs and decrease in calving rate. Image acquisition during the fixed-wing UAV BVLOS operation proved to be a very robust technique in harsh polar conditions of King George Island.


2016 ◽  
Vol 10 (3) ◽  
pp. 1317-1329 ◽  
Author(s):  
Jakub Małecki

Abstract. Svalbard is a heavily glacier-covered archipelago in the Arctic. Dickson Land (DL), in the central part of the largest island, Spitsbergen, is relatively arid and, as a result, glaciers there are relatively small and restricted mostly to valleys and cirques. This study presents a comprehensive analysis of glacier changes in DL based on inventories compiled from topographic maps and digital elevation models for the Little Ice Age (LIA) maximum, the 1960s, 1990, and 2009/2011. Total glacier area has decreased by  ∼ 38 % since the LIA maximum, and front retreat increased over the study period. Recently, most of the local glaciers have been consistently thinning in all elevation bands, in contrast to larger Svalbard ice masses which remain closer to balance. The mean 1990–2009/2011 geodetic mass balance of glaciers in DL is among the most negative from the Svalbard regional means known from the literature.


Sign in / Sign up

Export Citation Format

Share Document