Delving deeper into cosmogenic 26Al-10Be isochron-burial dating of Swiss Deckenschotter deposits

Author(s):  
Ewelina Broś ◽  
Florian Kober ◽  
Susan Ivy-Ochs ◽  
Reto Grischott ◽  
Marcus Christl ◽  
...  

<p>The oldest Quaternary deposits of the Swiss Northern Alpine Foreland are found on numerous hilltops, up to 300 m above the current valley bottoms. These Deckenschotter deposits consist mainly of glaciofluvial sediments intercalated with glacial sediments. Traditionally, the Deckenschotter are divided into two units: Höhere Deckenschotter (HDS – Higher Deckenschotter) and Tiefere Deckenschotter (TDS – Lower Deckenschotter). Elevation differences between the two suggest a phase of 100-150 m of incision (Graf, 2009).</p><p>Knowledge of their age of deposition is necessary for understanding the long-term landscape evolution as well as for assessing the long-term safety of the planned deep geological repository for nuclear waste in northern Switzerland (NTB 14-01, 2014). In this study, the method of isochron-burial dating was implemented to address the question of the age of the Deckenschotter. We aim to reconstruct the chronology of the alternating deposition and incision of the gravel units in the Northern Alpine Foreland. Our focus is placed on similar and complementary Deckenschotter sites located in the Northern Alpine Foreland in crucial locations in order to establish sound long-term landscape evolution scenarios. One of these is a former gravel pit, Feusi, situated in the southern slope of the hill chain called ‘Egg’ or ‘Schliniker Platten’, north of the village Oberweningen. The outcrop comprises several gravel units intercalated with glacigenic diamict layer in the upper part. Previous age estimates with the isochron-burial dating method indicate an age of 1.1 ± 0.2 Ma for the diamict layer (NAB 19-025, 2020). Knudsen et al. (2020) reported an age of 0.93 ± 0.13 Ma for the same layer based on a slightly different age calculation approach.</p><p>We sampled the lowermost accessible horizon, the Egg Schotter, of the Feusi outcrop at an altitude of ~580 m a.s.l. This horizon is located close to the base of the outcrop, just a few meters above the contact with the underlying Molasse and in a clear stratigraphic position, 20 m below the previously dated diamict. Study of the lowermost unit will allow us to temporally examine the earliest phases of Deckenschotter accumulation. Weathering horizons in the gravel layers overlying the Egg Schotter suggests periodic subaerial exposure. Therefore, the total time contained in the sediment package is difficult to estimate. Having two horizons dated at different depth in the same outcrop may provide insight into the timespan hidden between the deposition and weathering of different gravel layers. Indications of the timespan of HDS activity could be further gleaned by comparing to the age from the glacigenic sediment. In order to achieve this, eight clast samples of quartz-rich lithologies, of various shapes and sizes were collected in the Egg Schotter and processed for isochron-burial dating. The cosmogenic nuclides <sup>10</sup>Be and <sup>26</sup>Al were extracted and measured with the new MILEA accelerator at the accelerator mass spectrometry facility, ETH Zurich. The first results of this study will be presented.</p><p> </p><p>Graf, H.R. 2009: Quaternary Science Journal 58, 12–53</p><p>Nagra, NTB 14-01, 2014</p><p>Nagra, NAB 19-025, 2020</p><p>Knudsen, M.F. et al. 2020. Earth and Planetary Science Letters, 549, 116491</p>

2019 ◽  
Vol 68 (1) ◽  
pp. 53-73 ◽  
Author(s):  
Dorian Gaar ◽  
Hans Rudolf Graf ◽  
Frank Preusser

Abstract. Deposits of the Reuss Glacier in the central northern Alpine foreland of Switzerland are dated using luminescence methodology. Methodological considerations on partial bleaching and fading correction of different signals imply the robustness of the results. An age of ca. 25 ka for sediment directly overlying basal lodgement till corresponds well with existing age constraints for the last maximal position of glaciers of the northern Swiss Alpine Foreland. Luminescence ages imply an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The presented data are compared to findings from other parts of the Alps regarding glacier dynamics and palaeoclimatological implications, such as the source of precipitation during the Late Pleistocene.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 171-175 ◽  
Author(s):  
D. Ebert ◽  
M. Langer ◽  
P. Uhrmeister

SummaryThe endovascular treatment of abdominal aortic aneurysms has generated a great deal of interest since the early 1990s, and many different devices are currently available. The procedure of endovascular repair has been evaluated in many institutions and the different devices are compared. The first results were encouraging, but complications like endoleak, dislocation or thrombosis of the graft occurred. By the available devices the stent application is only promising, if the known exclusion criteria are strictly respected. Therefore a careful preinterventional assessment of the patient by different imaging modalities is necessary. As the available results up to now are preliminary and the durability of the devices has to be controlled, multicenter studies are required to improve the devices and observe their long- term success in the exclusion of abdominal aortic aneurysms.


Author(s):  
James ROSE

ABSTRACT Within the context of the work and achievements of James Croll, this paper reviews the records of direct observations of glacial landforms and sediments made by Charles Lyell, Archibald and James Geikie and James Croll himself, in order to evaluate their contributions to the sciences of glacial geology and Quaternary environmental change. The paper outlines the social and physical environment of Croll's youth and contrasts this with the status and experiences of Lyell and the Geikies. It also outlines the character and role of the ‘Glasgow School’ of geologists, who stimulated Croll's interest into the causes of climate change and directed his focus to the glacial and ‘interglacial’ deposits of central Scotland. Contributions are outlined in chronological order, drawing attention to: (i) Lyell's high-quality observations and interpretations of glacial features in Glen Clova and Strathmore and his subsequent rejection of the glacial theory in favour of processes attributed to floating icebergs; (ii) the significant impact of Archibald Geikie's 1863 paper on the ‘glacial drift of Scotland’, which firmly established the land-ice theory; (iii) the fact that, despite James Croll's inherent dislike of geology and fieldwork, he provided high-quality descriptions and interpretations of the landforms and sediments of central Scotland in order to test his theory of climate change; and (iv) the great communication skills of James Geikie, enhanced by contacts and evidence from around the world. It is concluded that whilst direct observations of glacial landforms and sediments were critical to the long-term development of the study of glaciation, the acceptance of this theory was dependent also upon the skills, personality and status of the Geikies and Croll, who developed and promoted the concepts. Sadly, the subsequent rejection of the land-ice concept by Lyell resulted in the same factors challenging the acceptance of the glacial theory.


2008 ◽  
Vol 2 (3) ◽  
pp. 218-227 ◽  
Author(s):  
Yu. A. Kugaenko ◽  
V. A. Saltykov ◽  
V. I. Sinitsyn ◽  
A. A. Shishkin

2010 ◽  
Vol 7 (11) ◽  
pp. 3473-3489 ◽  
Author(s):  
J. Holtvoeth ◽  
H. Vogel ◽  
B. Wagner ◽  
G. A. Wolff

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.


2000 ◽  
Vol 108 (6) ◽  
pp. 750-752
Author(s):  
Paul B. O'Sullivan ◽  
Brad Pillans ◽  
David L. Gibson ◽  
Barry P. Kohn ◽  
Colin F. Pain

Sign in / Sign up

Export Citation Format

Share Document