scholarly journals Amphibole CPO in retrograded gabbro from the Lyngen Magmatic Complex (Northern Scandinavian Caledonides, Norway).

Author(s):  
Marina Galindos Alfarache ◽  
Holger Stünitz ◽  
Jiří Konopásek ◽  
Amicia Lee

<p>Deformation of natural mafic rocks by viscous deformation mechanisms can occur even at low temperature conditions. In such instances, crystal plastic mechanisms are not operative, as their activity is restricted to very high temperatures for amphiboles, pyroxenes, and plagioclase. Instead, simultaneous mineral reactions may facilitate deformation at low temperature conditions. The gabbro from the Lyngen Magmatic Complex (LMC) constitutes a good example of such processes, because it has experienced deformation at low temperatures of greenschist to lower amphibolite-facies conditions, and the rock has been transformed from gabbro to greenschist. This study focuses on detailed analysis of deformation processes, metamorphic reactions and fabric development in the LMC gabbro. Most samples are overprinted by epidote amphibolite and greenschist-facies mineral assemblages. Preliminary observations distinguish two different types of amphiboles, which have been interpreted as different generations. The predominant type defines the stretching lineation and shows long prismatic habits whereas the less abundant type crystallized in a sub- to anhedral manner. The metamorphic conditions of growth for each amphibole type is yet not well constrained. However, we initially interpret the former to grow during epidote amphibolite- or greenschist facies-conditions, whereas the latter could represent relict grains from the original magmatic assemblage or products generated at amphibolite- or epidote amphibolite-facies conditions. Further analysis will determine the orientation, geochemistry and metamorphic conditions during growth for both amphibole types. A recent model proposed for eclogites suggests that simultaneous mineral growth and deformation can result in new products growing in a preferred direction. Such preferential growth can generate a shape preferred orientation parallel to the lineation, which results in the formation of crystal preferred orientations (CPO). We aim to test if similar microstructural observations can be translated to the amphiboles of the LMC gabbro. In such case, amphibole CPO’s would not be the product of crystal plasticity but of preferential growth. The large scale deformation of the LMC emphasizes the relevance of these results, as it would demonstrate that the interaction between mineral reactions and deformation can play a major role on regional deformation of large mafic bodies, such as the ocean floor.</p>

Mineralogia ◽  
2006 ◽  
Vol 37 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Jarostaw Majka ◽  
Bartosz Budzyń

Monazite Breakdown in Metapelites From Wedel Jarlsberg Land, Svalbard — Preliminary ReportMetapelites from the SW part of Wedel Jarlsberg Land were progressively metamorphosed under amphibolite facies conditions followed by a Caledonian low-temperature metamorphic event under greenschist facies conditions. The latter resulted in various stages of monazite breakdown. These include monazite alterations and the formation of allanite-apatite coronas.


2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Sophie Steinhagen ◽  
Swantje Enge ◽  
Karin Larsson ◽  
Joakim Olsson ◽  
Göran M. Nylund ◽  
...  

The growing world population demands an increase in sustainable resources for biorefining. The opening of new farm grounds and the cultivation of extractive species, such as marine seaweeds, increases worldwide, aiming to provide renewable biomass for food and non-food applications. The potential for European large-scale open ocean farming of the commercial green seaweed crop Ulva is not yet fully realized. Here we conducted manipulative cultivation experiments in order to investigate the effects of hatchery temperature (10 and 15 °C), nutrient addition (PES and 3xPES) and swarmer density (500 and 10,000 swarmers ml−1) on the biomass yield and biochemical composition (fatty acid, protein, carbohydrate, pigment and phenolic content) of off-shore cultivated Ulva fenestrata in a Swedish seafarm. High seedling densities were optimal for the growth of this northern hemisphere crop strain and significantly increased the mean biomass yield by ~84% compared to low seedling densities. Variations of nutrients or changes in temperature levels during the hatchery phase were not necessary to increase the subsequent growth in an open-water seafarm, however effects of the factors on the thallus habitus (thallus length/width) were observed. We found no significant effect of the environmental factors applied in the hatchery on the total fatty acid or crude protein content in the off-shore cultivated Ulva. However, low seedling density and low temperature increased the total carbohydrate content and furthermore, high temperature in combination with high nutrient levels decreased the pigment content (chlorophyll a, b, carotenoids). Low temperature in combination with high nutrient levels increased the phenolic content. Our study confirms the successful and sustainable potential for large-scale off-shore cultivation of the Scandinavian crop U. fenestrata. We conclude that high seedling density in the hatchery is most important for increasing the total biomass yield of sea-farmed U. fenestrata, and that changing temperature or addition of nutrients overall does not have a large effect on the biochemical composition. To summarize, our study contributes novel insights into the large-scale off-shore cultivation potential of northern hemisphere U. fenestrata and underpins suitable pre-treatments during the hatchery phase of seedlings to facilitate a successful and cost-efficient large-scale rope cultivation.


2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


Sign in / Sign up

Export Citation Format

Share Document