Automated high resolution rain water sampler for stable water isotope monitoring 

Author(s):  
Christoff Andermann ◽  
Markus Reich ◽  
Torsten Queißer ◽  
Bijay Puri ◽  
Oliver Rach ◽  
...  

<p>With global change, one of the largest short-term threats to our societies comes from changes in the hydro-meteorological cycle: droughts, flooding and potentially increasing extreme rain events may have far greater direct impact on humans than rising temperatures alone. These changes often have sever consequences and widespread impact on society and ecosystems, yet they are difficult to track, trace and measure in order to fully understand the underlying process of delivering moisture and recharging water reservoirs. Only through the comprehensive monitoring of precipitation waters in space and time can we improve our process understanding and better predict the direction and magnitude of future hydro-meteorological changes, in particular on regional spatial scales. However, no commercial automated sampling solution exists, which fulfills the quality criteria for sophisticated hydrochemical water analysis.</p><p>Here, we present an new developed automatic precipitation water sampler for stable water isotope analysis of precipitation. The device is designed to be highly autonomous and robust for campaign deployment in harsh remote areas and fulfills the high demands on sampling and storage for isotope analysis (i.e. sealing of samples from atmospheric influences, no contamination and preservation of the sample material). The sampling device is portable, has low power consumption and a real-time adaptable sampling protocol strategy, and can be maintained at distance without any need to visit the location. Furthermore, the obtained water samples are not restricted to isotope analysis but can be used for any type of environmental water analysis. The current configuration can obtain 165 discrete rainwater samples with a minimum timely resolution of 5min or volume wise 2mm of rainfall.</p><p>The device was tested in several evaluation and benchmarking cycles. First lab tests with dyed waters and waters with strongly differing isotopic signature demonstrate that the device can obtain, store and conserve samples without cross contamination over long periods of time. The device has been tested so far under several conditions, e.g. heavy summer thunderstorms with more than 50mm/24h of rainfall, sustained winter rainfall and in cold conditions involving melting of snow. Furthermore, we run a benchmark test with several devices in parallel. Finally, in October 2020, we had installed six devices, in collaboration with Germany's National Meteorological Service (Deutscher Wetterdienst DWD), in a South-West to North-East transect across the Harz mountains in Germany. The transect covers ~ 100km distance along the main orographic gradient.</p><p>This automated rainwater sampler provides an economic and sophisticated technological solution for monitoring moisture pathways and water transfer processes with the analytical quality of laboratory standard measurements on a new level of temporal and spatial resolution.</p>

2020 ◽  
Author(s):  
Christoff Andermann ◽  
Torsten Queißer ◽  
Markus Reich ◽  
Bijaya Puri ◽  
Niels Hovius ◽  
...  

<p>With global climate change, one of the largest short-term threats to our societies comes from changes in the hydro-meteorological cycle: droughts, flooding and potentially increasing extreme rain events may have far greater direct impact on humans than rising temperatures alone. These changes often have sever consequences and widespread impact on society and ecosystems, yet they are difficult to track, trace and measure in order to fully understand the underlying process of delivering moisture and recharging water reservoirs. Only through the comprehensive monitoring of precipitation waters in space and time can we improve our process understanding and better predict the direction and magnitude of future hydro-meteorological changes, in particular on regional spatial scales. However, no commercial automated sampling solution exists, which fulfills the quality criteria for sophisticated hydrochemical water analysis. Here, we present an advanced prototype automatic precipitation water sampler for stable water isotope analysis of precipitation. The device is designed to be highly autonomous and robust for campaign deployment in harsh remote areas and fulfills the high demands on sampling and storage for isotope analysis (i.e. sealing of samples from atmospheric influences, no contamination and preservation of the sample material). The sampling device is portable, has low power consumption and a real-time adaptable sampling protocol strategy, and can be maintained at distance without any need to visit the location. Furthermore, the obtained water samples are not restricted to isotope analysis but can be used for any type of environmental water analysis. The current configuration can obtain 165 discrete rainwater samples with a minimum timely resolution of 5min or volume wise 2mm of rainfall. Our lab tests with dyed waters and waters with strongly differing isotopic signature demonstrate that the device can obtain, store and conserve samples without cross contamination over long periods of time. The device has been tested so far under several conditions, e.g. heavy summer thunderstorms with more than 50mm/24h of rainfall, sustained winter rainfall and in cold conditions involving melting of snow. This automated rainwater sampler provides an economic and sophisticated technological solution for monitoring moisture pathways and water transfer processes with the analytical quality of laboratory standard measurements on a new level of temporal and spatial resolution.</p>


2019 ◽  
Vol 67 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Andrea Rücker ◽  
Massimiliano Zappa ◽  
Stefan Boss ◽  
Jana von Freyberg

Abstract The contribution of snow meltwater to catchment streamflow can be quantified through hydrograph separation analyses for which stable water isotopes (18O, 2H) are used as environmental tracers. For this, the spatial and temporal variability of the isotopic composition of meltwater needs to be captured by the sampling method. This study compares an optimized snowmelt lysimeter system and an unheated precipitation collector with focus on their ability to capture snowmelt rates and the isotopic composition of snowmelt. The snowmelt lysimeter system consists of three individual unenclosed lysimeters at ground level with a surface of 0.14 m2 each. The unheated precipitation collector consists of a 30 cm-long, extended funnel with its orifice at 2.3 m above ground. Daily snowmelt samples were collected with both systems during two snowfall-snowmelt periods in 2016. The snowmelt lysimeter system provided more accurate measurements of natural melt rates and allowed for capturing the small-scale variability of snowmelt process at the plot scale, such as lateral meltwater flow from the surrounding snowpack. Because of the restricted volume of the extended funnel, daily melt rates from the unheated precipitation collector were up to 43% smaller compared to the snowmelt lysimeter system. Overall, both snowmelt collection methods captured the general temporal evolution of the isotopic signature in snowmelt.


2019 ◽  
Author(s):  
Tania Nasreen ◽  
Nora A. S. Hussain ◽  
Mohammad Tarequl Islam ◽  
Fabini D. Orata ◽  
Paul C. Kirchberger ◽  
...  

ABSTRACTVibrio metoecus is a recently described and little studied causative agent of opportunistic infections in humans, often coexisting with V. cholerae in aquatic environments. However, the relative abundance of V. metoecus with V. cholerae and their population dynamics in aquatic reservoirs is still unknown. We developed a multiplex qPCR assay with a limit of detection of three copies per reaction to simultaneously quantify total V. metoecus and V. cholerae abundance, as well as the toxigenic and O1 serogroup subpopulations of V. cholerae from environmental samples. Four different genes were targeted as specific markers for individual Vibrio species or subpopulations; viuB, a gene encoding a vibriobactin utilization protein, was used to quantify the total V. cholerae population. The cholera toxin gene ctxA provided an estimation of toxigenic V. cholerae abundance, while the rfbO1 gene specifically detected and quantified V. cholerae belonging to the O1 serogroup, which includes almost all lineages of the species responsible for the majority of past and ongoing cholera pandemics. To measure V. metoecus abundance, the gene mcp, encoding methyl accepting chemotaxis protein, was used. Marker specificity was confirmed by testing several isolates of V. cholerae and V. metoecus alongside negative controls of isolates within and outside of the Vibrio genus. Analysis of environmental water samples collected from four different geographic locations including cholera-endemic (Dhaka, Kuakata and Mathbaria in Bangladesh) and non-endemic (Oyster Pond in Falmouth, Massachusetts, USA) regions showed that V. metoecus was only present in the USA site, recurring seasonally. Within the coastal USA site, the non-toxigenic O1 serogroup represented up to ∼18% of the total V. cholerae population. V. cholerae toxigenic O1 serogroup was absent or present in low abundance in coastal Bangladesh (Kuakata and Mathbaria) but constituted a relatively high proportion of the total V. cholerae population sustained throughout the year in inland Bangladesh (Dhaka). A preference for host/particle attachment was observed, as the majority of cells from both Vibrio species (>90%) were identified in the largest water size fraction sampled, composed of particles or organisms >63 μm and their attached bacteria. This is the first study to apply a culture-independent method to quantify V. cholerae or V. metoecus directly in environmental reservoirs of areas endemic and non-endemic for cholera on significant temporal and spatial scales.SIGNIFICANCECholera is a life-threatening disease that requires immediate intervention; it is of prime importance to have fast, accurate and sensitive means to detect V. cholerae. Consistent environmental monitoring of the abundance of V. cholerae along with its toxigenic and O1 serogroup subpopulations could facilitate the determination of the actual distribution of this organism in aquatic reservoirs and thus help to predict an outbreak before it strikes. The lack of substantial temporal and spatial environmental sampling, along with specific quantitative measures, has made this goal elusive so far. The same is true for V. metoecus, a close relative of V. cholerae which has been associated with several clinical infections and could likely pose an emerging threat, readily exchanging genetic material with its more famous relative.


2021 ◽  
Author(s):  
Sonja Wahl ◽  
Alexandra Zuhr ◽  
Maria Hörhold ◽  
Anne-Katrine Faber ◽  
Hans Christian Steen-Larsen

<p>Post-depositional processes affect the stable water isotope signal of surface snow between precipitation events. Combined vapor-snow exchange processes and isotope diffusion influence the top layer of snow as well as buried layers below. This implies, that ice core isotope climate proxy records can not be interpreted as a precipitation weighted temperature signal alone.</p><p>Here we present to what extend surface sublimation can explain in-situ observed changes of the stable water isotope signal in the snow.<br>We use direct observations of the isotopic composition of the sublimation flux together with surface snow samples taken in the North-East of the Greenland Ice Sheet accumulation zone throughout the summer months of 2019 to demonstrate sublimation impacts.<br>We show that, contrary to the understanding of effectless layer-by-layer removal of snow, sublimation involves fractionation and therefore influences the isotopic composition of the snow. Complementary measurements of humidity as well as isotope fluxes constrain the local vapor snow exchange and allow for the quantification of post-depositional influences while the snow is exposed to the atmosphere.<br>This improved process understanding of the formation of the climate signal found in snow is important for merging climate modeling and ice core proxies. </p>


2003 ◽  
Vol 47 (7-8) ◽  
pp. 125-131 ◽  
Author(s):  
S. Lemmens

Brown and Root has participated in extensive investigations of the effects of the discharges from Perth's Ocean Outlets, as part of the Perth Long-Term Ocean Outlet Monitoring (PLOOM) Programme (1995 to 2001). The major environmental concern with these discharges is the potential for nutrients in the wastewater to stimulate excess primary production in the sea. PLOOM, and its predecessor, the Perth Coastal Waters Study, have been instrumental in developing parameters for the measurement of the performance of Perth's ocean outlets. These parameters are currently being integrated in the development of Environmental Quality Criteria (EQC) for the Perth region. EQC play an important role in the management framework by providing the quantitative benchmarks for measuring success in achieving the environmental quality objectives. PLOOM has monitored a range of environmental parameters in the Perth Metropolitan area, including water quality, nutrient levels, water circulation and plume dilution, levels of metals and pesticides present in the marine environment, and the environmental health of benthic communities, in particular of temperate reef systems. During the PLOOM studies, a valuable tool was being developed to monitor outlet performance. Artificial reef structures (“periphyton collectors”) were placed in the plume trajectory. Here, periphyton is defined as: the microalgae (diatoms and microscopic filamentous forms), algal propagules, bacteria, microfauna and particulate material that are found in a mucous-like layer commonly coating seagrass leaves, and that initially colonise artificial surfaces. The advantage of periphyton collectors is that these largely remove the effects of natural variability, can be placed at any depth and distance from a potential nutrient source, provide an easy, cost effective measure of environmental impact, integrated over an extended period (one month), and produce tangible results which can be interpreted by the wider community, as well as legislative authorities and by outlet managers. In addition, outlet performance can be measured by means of these tools, and tested against accepted environmental criteria. Between 1995-2001, periphyton collectors, consisting of 15 × 15 cm PVC plates attached to moorings at fixed depths (2, 4 and 8 m), were deployed for one month during spring, summer and autumn, at increasing distance from the source (250 and 500 m distance to the north, east, west, and south, and at 1,000, 2,000, 4,000 m to the north and south only). After retrieval, the collectors were analysed for total biomass (g AFDW m−2), calcium carbonate content (% AFDW) and chlorophyll levels (chlorophyll a m−2). The results confirmed the predictions made by hydrodynamic modelling (e.g. Zic and Gondinoudis, 2002) and are in accordance with measured nutrient and chlorophyll a levels around the outlets, and demonstrated that the zone of influence was strongly determined by the prevailing currents (to the north), and largely restricted to surface layers (2-4 m depth). Both biomass and chlorophyll content proved reliable parameters, which have the potential to be used as Environmental Quality Criteria (EQC's) for the management of Perth's coastal waters. These EQC's were developed in collaboration with legislative authorities, as part of draft criteria, in accordance with national guidelines: ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.


1991 ◽  
Vol 7 (Supple) ◽  
pp. 733-736
Author(s):  
TAKASHI KORENAGA ◽  
YOSHIYUKI YONO

2009 ◽  
Vol 99 (4) ◽  
pp. 347-358 ◽  
Author(s):  
J.A. Bennett ◽  
D.R. Gillespie ◽  
S.L. VanLaerhoven

AbstractOmnivory involves numerous feeding relationships and a complex web of interactions. When using omnivores in biocontrol, these interactions need to be understood to maximize feeding on the target species and minimize non-target interactions. Dicyphus hesperus is used along with Encarsia formosa for biocontrol of whiteflies in greenhouse tomato crops. Dicyphus hesperus is a generalist omnivore which feeds on all components of the system. To quantify these interactions, stable isotope analysis was used to identify trophic position with nitrogen isotopes (δ15N) and plant sources with carbon isotopes (δ13C). Feeding trials were used to establish baseline isotopic data for D. hesperus and their diet, including Verbascum thapsus, an alternative plant food. Cage trials were used to monitor population abundances and the isotopic signature of D. hesperus. In feeding trials, D. hesperus were enriched relative to their food, suggesting an elevated trophic position. However, large amounts of isotopic variation were found within all diet components, with only V. thapsus exhibiting a distinct signature. In cage trials, the average δ15N and δ13C of the omnivore declined over time, coinciding with declines in total available prey, though it may be confounded by changes in temperature. The range of δ13C, but not the range of δ15N, also declined over time. This suggests a change in the plant source within the diet, but also some unquantified variability within the population. We suggest that diet variability exists within D. hesperus populations, declining as prey become less abundant.


2019 ◽  
Vol 70 (9) ◽  
pp. 1295 ◽  
Author(s):  
Ivor Stuart ◽  
Clayton Sharpe ◽  
Kathryn Stanislawski ◽  
Anna Parker ◽  
Martin Mallen-Cooper

Worldwide, riverine fish are the target of environmental water because populations have declined in lotic river habitats following river regulation. Murray cod is an endangered Australian riverine fish with remaining populations associated with lotic river reaches with instream habitat, including some creeks operated as part of irrigation systems. Our objectives were to develop a life history model, apply the building block method of environmental flows to enhance the abundance of juvenile Murray cod and promote population recovery. From 2008 to 2018 we evaluated changes to Murray cod juvenile abundance before and after implementation of a perennial environmental flow regime that began in 2013. During the first year of the environmental flow, larvae were collected as evidence of spawning. Murray cod abundance can be enhanced with environmental flows that target: (1) an annual spring spawning or recruitment flow with no rapid water level drops; (2) maximising hydrodynamic complexity (i.e. flowing habitats that are longitudinally continuous and hydrodynamically complex); and (3) an annual base winter connection flow. Recognition that incorporating hydraulics (water level and velocity) at fine and coarse time scales, over spatial scales that reflect life histories, provides broader opportunities to expand the scope of environmental flows to help restore imperilled fish species in regulated ecosystems.


Sign in / Sign up

Export Citation Format

Share Document