Development of a high-resolution prior for inverse modelling of New York City methane emissions

Author(s):  
Joseph Pitt ◽  
Israel Lopez-Coto ◽  
Kris Hajny ◽  
Jay Tomlin ◽  
Robert Kaeser ◽  
...  

<p>Recent studies have shown that methane emissions are underestimated by inventories in many US urban areas. This has important implications for climate change mitigation policy at the city, state and national level. Uncertainty in both the spatial distribution and sectoral allocation of urban emissions can limit the ability of policy makers to develop well-targeted emission reductions strategies. Top-down emission estimates based on atmospheric greenhouse gas measurements can help to improve inventories and better inform policy decisions.</p><p>This presentation builds on previous work estimating methane emissions from New York City and the wider urban area based on measurements taken during nine research flights. We used an ensemble of dispersion model runs in a Bayesian inverse modelling framework to derive posterior emission estimates. Prior emissions were taken from three coarse-resolution inventories based on spatially disaggregated national totals. The most recent version of EDGAR (v5) and the gridded EPA inventory both required upscaling by more than a factor of two to be consistent with our measurements.</p><p>Here, we construct a high-resolution methane emission prior using a combination of spatial proxies and reported emissions for various sectors. We present preliminary results evaluating the ability of this new prior to represent the magnitude and spatial distribution of emissions, through comparison with both the measured data and results obtained using coarser resolution inventories.</p>

2013 ◽  
Vol 28 (6) ◽  
pp. 527-545 ◽  
Author(s):  
Sunil Bhaskaran ◽  
Eric Nez ◽  
Karolyn Jimenez ◽  
Sanjiv K. Bhatia

2020 ◽  
Vol 237 ◽  
pp. 03020
Author(s):  
Adrian Diaz Fortich ◽  
Victor Dominguez ◽  
Yonghua Wu ◽  
Barry Gross ◽  
Fred Moshary

In order to better understand the behavior of particulate pollution and atmospheric dynamics in New York City, it is of great importance to analyze the spatial distribution of aerosols. A scanning lidar system allows for horizontal range-resolved observations of aerosol backscatter with high space and time resolution. A challenge to analyzing the lidar returns is to disentangle extinction over the range of the observations to retrieve the backscatter coefficient with distance. This work presents horizontal measurements taken with a scanning eye-safe Micro Pulse Lidar in New York City. The measurements are analyzed using the Slope Method to get an estimate of the range-resolved aerosol backscatter coefficient. The results are presented as backscatter coefficient maps that display the aerosol spatial distribution within the field of view of the scanning pattern deployed. These observations clearly resolve aerosol dynamics and emission sources within the urban areas.


2010 ◽  
Vol 10 (10) ◽  
pp. 22669-22723 ◽  
Author(s):  
Y.-L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
K. L. Demerjian ◽  
W.-N. Chen ◽  
...  

Abstract. Submicron aerosol particles (PM1) were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) during the summer 2009 Field Intensive Study at Queens College in New York City. Organic aerosol (OA) and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of total PM1 mass on average. The average mass size distribution of OA presents a small mode peaking at ~150 nm (Dva) in addition to an accumulation mode (~550 nm) that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of sulfate and OA both show pronounced peaks between 01:00–02:00 p.m. EST due to photochemical production. The average (±1σ) oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios of OA in NYC are 0.36 (±0.09), 1.49 (±0.08), and 0.012(±0.005), respectively, corresponding to an average organic mass-to-carbon (OM/OC) ratio of 1.62(±0.11). Positive matrix factorization (PMF) of the high resolution mass spectra identified five OA components: a hydrocarbon-like OA (HOA), two types of oxygenated OA (OOA) including a low-volatility OOA (LV-OOA) and a semi-volatile OOA (SV-OOA), a cooking-emission related OA (COA), and a unique nitrogen-enriched OA (NOA). HOA appears to represent primary OA (POA) from urban traffic emissions. It comprises primarily of reduced species (H/C=1.83; O/C=0.06) and shows a mass spectral pattern very similar to those of POA from fossil fuel combustion, and correlates tightly with traffic emission tracers including elemental carbon and NOx. LV-OOA, which is highly oxidized (O/C=0.63) and correlates well with sulfate, appears to be representative for regional, aged secondary OA (SOA). SV-OOA, which is less oxidized (O/C=0.38) and correlates well with non-refractory chloride, likely represents less photo-chemically aged, semi-volatile SOA. COA shows a similar spectral pattern to the reference spectra of POA from cooking emissions and a distinct diurnal pattern peaking around local lunch and dinner times. In addition, NOA is characterized with prominent CxH2x+2N+ peaks likely from amine compounds. Our results indicate that cooking-related activities are a major source of POA in NYC, releasing comparable amounts of POA as traffic emissions. POA=HOA+COA) on average accounts for ~30% of the total OA mass during this study while SOA dominates the OA composition with SV-OOA and LV-OOA on average accounting for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC involves a~continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed analysis of NOA (5.8% of OA) presents evidence that nitrogen-containing organic species such as amines might have played an important role in the atmospheric processing of OA in NYC, likely involving acid-base chemistry. Analysis of air mass trajectories and satellite imagery of aerosol optical depth (AOD) indicates that the high potential source regions of secondary sulfate and aged OA are mainly located in regions to the west and southwest of the city.


2019 ◽  
Vol 39 (12) ◽  
pp. 4721-4735 ◽  
Author(s):  
Luis E. Ortiz ◽  
Jorge E. González ◽  
Radley Horton ◽  
Wuyin Lin ◽  
Wei Wu ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 063567-1 ◽  
Author(s):  
Sean W. MacFaden ◽  
Jarlath P.M. O’Neil-Dunne ◽  
Anna R. Royar ◽  
Jacqueline W.T. Lu ◽  
Andrew G. Rundle

2012 ◽  
Vol 12 (4) ◽  
pp. 2215-2227 ◽  
Author(s):  
Y. L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
W.-N. Chen ◽  
M.-S. Bae ◽  
...  

Abstract. Knowledge of the variations of mass concentration, chemical composition and size distributions of submicron aerosols near roadways is of importance for reducing exposure assessment uncertainties in health effects studies. The goal of this study is to deploy and evaluate an Atmospheric Sciences Research Center-Mobile Laboratory (ASRC-ML), equipped with a suite of rapid response instruments for characterization of traffic plumes, adjacent to the Long Island Expressway (LIE) – a high-traffic highway in the New York City Metropolitan Area. In total, four measurement periods, two in the morning and two in the evening were conducted at a location approximately 30 m south of the LIE. The mass concentrations and size distributions of non-refractory submicron aerosol (NR-PM1) species were measured in situ at a time resolution of 1 min by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer, along with rapid measurements (down to 1 Hz) of gaseous pollutants (e.g. HCHO, NO2, NO, O3, and CO2, etc.), black carbon (BC), and particle number concentrations and size distributions. Particulate organics varied dramatically during periods with high traffic influences from the nearby roadway. The variations were mainly observed in the hydrocarbon-like organic aerosol (HOA), a surrogate for primary OA from vehicle emissions. The inorganic species (sulfate, ammonium, and nitrate) and oxygenated OA (OOA) showed much smoother variations indicating minor impacts from traffic emissions. The concentration and chemical composition of NR-PM1 also varied differently on different days depending on meteorology, traffic intensity and vehicle types. Overall, organics dominated the traffic-related NR-PM1 composition (>60%) with HOA accounting for a major fraction of OA. The traffic-influenced organics showed two distinct modes in mass-weighted size distributions, peaking at ∼120 nm and 500 nm (vacuum aerodynamic diameter, Dva), respectively. OOA and inorganic species appear to be internally mixed in the accumulation mode peaking at ∼500–600 nm. The enhancement of organics in traffic emissions mainly occurred at ultrafine mode dominated by HOA, with little relation to the OOA-dominated accumulation mode. From Fast Mobility Particle Sizer (FMPS) measurements, a large increase in number concentration at ∼10 nm (mobility number mean diameter, Dm) was also found due to traffic influence; though these particles typically contribute a minor fraction of total particle mass. The observed rapid variations of aerosol chemistry and microphysics may have significant implications for near-highway air pollution characterization and exposure assessments.


2021 ◽  
Author(s):  
Luis Zambrano ◽  
Steven N Handel ◽  
Tania Fernandez ◽  
Isabel Brostella

Abstract ContextLarge cities contain different sizes and distributions of green spaces in a sea of buildings and roads. This urban landscape establishes the habitat for different species that persist in cities.ObjectivesHow does this “archipelago” of habitat space function? How does the arrangement of green spaces affect plant and animal species' biodiversity and movement through this urban pattern?MethodsBy using Patch Analyst Metrics, we propose a novel method to analyze and improve the current spatial arrangement of green spaces using Mexico City and New York City, long-established urban areas.ResultsThe two cities differ in the number, size, and spatial distribution of green spaces. Frequency analysis suggests that Mexico City has a high number of large green spaces for native species conservation; but most of them are in one vast cluster of green areas at the south. In New York City large spaces are distributed along the whole territory, comprising most potential habitats, but it has much more small areas. This spatial analysis shows particular areas in which both cities have the potential to add connectivity among existing green spaces for dispersal of many taxa of plants and animals. ConclusionsMuch data is available on the potential dispersion through cities, but a better framework for understanding the existing distribution is needed for future landscape decisions. Results suggest ways that new urban areas can better increase plant and animal movement patterns.


2019 ◽  
Vol 199 ◽  
pp. 368-379 ◽  
Author(s):  
Kaihui Zhao ◽  
Yunxuan Bao ◽  
Jianping Huang ◽  
Yonghua Wu ◽  
Fred Moshary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document