Effect of Plant Growth Promoting Rhizobacteria on Phytoextraction of Critical Raw Materials and Potentially Toxic Elements in Soil

Author(s):  
Precious Okoroafor ◽  
Lotte Mann ◽  
Oliver Wiche

<p>There are several regions of the world where soils are contaminated with potentially toxic elements (PTE) and/or have critical raw materials (CRM) that cannot be extracted through conventional raw material extraction techniques because of their low amounts. Phytoextraction- a kind of phytoremediation- offers good option or method to sustainably remediate these contaminated soils and extract these CRM from soils. The successful phytoextraction of these elements of interest from soil is dependent on their bioavailability for plant uptake and biomass production which could be increased by inoculating soil with plant growth promoting rhizobacteria (PGPR) and the element acquisition characteristics of the plant species used for phytoextraction. This study investigated the effect of the PGPR Bacillus amyloliquefaciens - FZB42 also called Rhizovital produced as spore’s formulation by ABiTEP on the phytoextraction efficiency of two selected species, Zea mays and Fagopyrum esculentum grown in potted soils under artificial lighting conditions for about 8 weeks in a laboratory. Results showed that for Fagopyrum esculentum, the inoculation of soil with Rhizovital increased the uptake of As, Cu, Pb and Co, Ni, Mg, K, P, La, Ce, Y, sum of Heavy Rare Earth Elements (HREE), sum of Light Rare Earth Elements (LREE) but significantly only for Cu and Co at alpha level 0.05 and insignificantly decreased the uptake for Ge. For Zea mays, results showed that inoculating soil with Rhizovital decreased uptake for all elements investigated and significantly so for only Co but showed an insignificant increasing effect on the uptake of Cu. For the two test species, similarity in effects of inoculation of soil with Rhizovital on uptake of elements only existed for Cu (increasing effect) and Ge (decreasing effect) suggesting that the addition of Rhizovital to soil could increase the Cu phytoextraction efficiency of Zea mays and Fagopyrum esculentum and decrease the phytoextraction efficiency of Germanium in both plants. Results from this research suggest that inoculation of soil with the PGPR Bacillus amyloliquefaciens - FZB42 could increase the phytoextraction of Copper by Zea mays and Fagopyrum esculentum respectively, thus enhancing the phytoextraction efficiency of both plants in soils contaminated by copper. Also, results suggest that inoculation of soil with Rhizovital could increase the phytoextraction efficiency of Fagopyrum esculentum for most of the PTEs and CRM investigated in this experiment and that Fagopyrum esculentum is a good candidate for PGPR assisted phytoextraction of PTE and CRM</p>

2021 ◽  
Vol 9 (11) ◽  
pp. 2398
Author(s):  
Ibraheem Olamide Olasupo ◽  
Qiuju Liang ◽  
Chunyi Zhang ◽  
Md Shariful Islam ◽  
Yansu Li ◽  
...  

Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1960
Author(s):  
Yasser Nehela ◽  
Yasser S. A. Mazrou ◽  
Tarek Alshaal ◽  
Asmaa M. S. Rady ◽  
Ahmed M. A. El-Sherif ◽  
...  

The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar) significantly improved the soil ecosystem and physicochemical properties and K+, Ca2+, and Mg2+ contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4+ g−1 dry soil d−1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g−1 dry soil d−1) in 2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control. PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar > PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS), relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment. These findings could be guidelines for cultivating not only maize but other cereal crops particularly in salt-affected soil and sodic-saline soil.


Sign in / Sign up

Export Citation Format

Share Document