Experiment and simulation of stress-dependent P-wave velocity anisotropy in sandstone

Author(s):  
Haimeng Shen ◽  
Xiaying Li ◽  
Qi Li

<p>Velocity anisotropy is particularly important in field applications of seismic monitoring or exploration [1]. We investigate the stress-dependent P-wave velocity anisotropy of sandstones with triaxial experiments and PFC based numerical simulation [2-3]. The sandstone sample was taken from the lower Shaximiao formation, Sichuan Basin, China [4]. The evolution of anisotropy is discussed with the ellipse least-squares fitting method. The results show that the P-wave velocity is affected by both the bedding plane and loading conditions. As confining pressure increases, the anisotropy magnitude decreases for each sample. The direction of anisotropy is along with the direction of the bedding plane. Under deviator loading, the anisotropy is strengthened for the sample with bedding parallel to the maximum principal stress. The direction of anisotropy reversal occurs in the sample with bedding normal to the maximum principal stress. And the anisotropy magnitude of that sample is reduced firstly and then improved. The P-wave velocity anisotropy is originated from preferred mineral orientation and aligned cracks in these samples. The stress has little effect on the mineral orientation. The evolution of P-wave velocity anisotropy is related to closing and reopening of microcracks.</p><p> </p><p>Keywords: Velocity anisotropy; Anisotropy reversal; Triaxial experiment; PFC2D; Sandstone</p><p> </p><p>[1] Li, X., Lei, X. & Li, Q. 2018. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields. Rock Mechanics and Rock Engineering, 51, 695-711, http://doi.org/10.1007/s00603-017-1356-2</p><p>[2] Li, X., Lei, X. & Li, Q. 2016. Injection-induced fracturing process in a tight sandstone under different saturation conditions. Environmental Earth Sciences, 75, 1466, http://doi.org/10.1007/s12665-016-6265-2</p><p>[3] Shen, H., Li, X., Li, Q. & Wang, H. 2020. A method to model the effect of pre-existing cracks on P-wave velocity in rocks. Journal of Rock Mechanics and Geotechnical Engineering, 12, 493-506, http://doi.org/10.1016/j.jrmge.2019.10.001</p><p>[4] Li, X., Lei, X., Li, Q. & Chen, D. 2021. Influence of bedding structure on stress-induced elastic wave anisotropy in tight sandstones. Journal of Rock Mechanics and Geotechnical Engineering, -, http://doi.org/10.1016/j.jrmge.2020.06.003</p>

2013 ◽  
Vol 395-396 ◽  
pp. 852-855 ◽  
Author(s):  
Li Gang Zhang ◽  
Hai Bo Wang ◽  
Xiao Dong Si ◽  
Shi Bin Li

In view of the low pressure tight gas reservoir in Songnan block, the comprehensive experiment of in-situ stress is carried out. Firstly, the tuffaceous breccia of Longshen 301 and 307 has been cored and the flag line is depicted. Through the viscous remanence experiment, the secondary viscous remanence component at 0°C~200°C is gradually separated, and the average direction of the two groups core flag line are obtained, which are 92.0° and 114.7°. Then to mark the flag line as the baseline, using the wave velocity anisotropy experiment to measure the acoustic wave velocity under different phase angle, the minimum wave velocity phase angle of the two groups core are achieved, which are 23° and 44° . And combined with the direction of the flag line, the direction of maximum horizontal principal stress are determined for N69o E and N70.7o E. Finally, using DSA (differential strain) experiment, the strain recovery of 9 direction under hydrostatic pressure are measured, and the three principal strain, the magnitude and direction of the principal stress are obtained through the inversion, the maximum principal stress direction of which are N70.8o E and N71.7o E. Compared the wave velocity anisotropy experiments and DSA experimental results, both close, the direction of the regional maximum horizontal in-situ stress is determined for N70.5° E ± 1.5°. According to the above research results, the basis for the engineering design of Songnan block such as oil and gas exploration, development, drilling and production is provided.


2020 ◽  
pp. 1-62 ◽  
Author(s):  
Jamal Ahmadov ◽  
Mehdi Mokhtari

Tuscaloosa Marine Shale (TMS) formation is a clay- and organic-rich emerging shale play with a considerable amount of hydrocarbon resources. Despite the substantial potential, there have been only a few wells drilled and produced in the formation over the recent years. The analyzed TMS samples contain an average of 50 wt% total clay, 27 wt% quartz and 14 wt% calcite and the mineralogy varies considerably over the small intervals. The high amount of clay leads to pronounced anisotropy and the frequent changes in mineralogy result in the heterogeneity of the formation. We studied the compressional (VP) and shear-wave (VS) velocities to evaluate the degree of anisotropy and heterogeneity, which impact hydraulic fracture growth, borehole instabilities, and subsurface imaging. The ultrasonic measurements of P- and S-wave velocities from five TMS wells are the best fit to the linear relationship with R2 = 0.84 in the least-squares criteria. We observed that TMS S-wave velocities are relatively lower when compared to the established velocity relationships. Most of the velocity data in bedding-normal direction lie outside constant VP/VS lines of 1.6–1.8, a region typical of most organic-rich shale plays. For all of the studied TMS samples, the S-wave velocity anisotropy exhibits higher values than P-wave velocity anisotropy. In the samples in which the composition is dominated by either calcite or quartz minerals, mineralogy controls the velocities and VP/VS ratios to a great extent. Additionally, the organic content and maturity account for the velocity behavior in the samples in which the mineralogical composition fails to do so. The results provide further insights into TMS Formation evaluation and contribute to a better understanding of the heterogeneity and anisotropy of the play.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D41-D53 ◽  
Author(s):  
Adam M. Allan ◽  
Tiziana Vanorio ◽  
Jeremy E. P. Dahl

The sources of elastic anisotropy in organic-rich shale and their relative contribution therein remain poorly understood in the rock-physics literature. Given the importance of organic-rich shale as source rocks and unconventional reservoirs, it is imperative that a thorough understanding of shale rock physics is developed. We made a first attempt at establishing cause-and-effect relationships between geochemical parameters and microstructure/rock physics as organic-rich shales thermally mature. To minimize auxiliary effects, e.g., mineralogical variations among samples, we studied the induced evolution of three pairs of vertical and horizontal shale plugs through dry pyrolysis experiments in lieu of traditional samples from a range of in situ thermal maturities. The sensitivity of P-wave velocity to pressure showed a significant increase post-pyrolysis indicating the development of considerable soft porosity, e.g., microcracks. Time-lapse, high-resolution backscattered electron-scanning electron microscope images complemented this analysis through the identification of extensive microcracking within and proximally to kerogen bodies. As a result of the extensive microcracking, the P-wave velocity anisotropy, as defined by the Thomsen parameter epsilon, increased by up to 0.60 at low confining pressures. Additionally, the degree of microcracking was shown to increase as a function of the hydrocarbon generative potential of each shale. At 50 MPa confining pressure, P-wave anisotropy values increased by 0.29–0.35 over those measured at the baseline — i.e., the immature window. The increase in anisotropy at high confining pressure may indicate a source of anisotropy in addition to microcracking — potentially clay mineralogical transformation or the development of intrinsic anisotropy in the organic matter through aromatization. Furthermore, the evolution of acoustic properties and microstructure upon further pyrolysis to the dry-gas window was shown to be negligible.


Sign in / Sign up

Export Citation Format

Share Document