Application of earth observation datasets and Analytic Hierarchy Process in the mapping of Landslide hazard zones of Manipur, India

Author(s):  
Digvijay Singh ◽  
Arnab Laha

<p>Landslides problems are one of the major natural hazards in the mountainous region. Every year due to the increase in anthropogenic factors and changing climate, the problem of landslides is increasing, which leads to huge loss of property and life. Landslide is a common and regular phenomenon in most of the northeastern states of India.  However, in recent past years, Manipur has experienced several landslides including mudslides during the rainy season. Manipur is a geologically young and geodynamically active area with many streams flowing parallel to fault lines. As a first step toward hazard management, a landslide susceptibility map is the prime necessity of the region. In this study, we have prepared a landslide hazard map of the state using freely available earth observations datasets and multi-criteria decision making technique, i.e., Analytic Hierarchy Process (AHP). For this purpose, lithology, rainfall, slope, aspect, relative relief, Topographic Wetness Index, and distance from road, river and fault were used as the parameters in AHP based on the understanding of their influence towards landslide in that region. The hazard map is classified into four hazard zones: Very High, High, Moderate, and Low. About 40% of the state falls under very high and high hazard zone, and the hilly regions such as Senapati and Chandel district are more susceptible to the landslide. Among the factors, slope and rainfall have a more significant contribution towards landslide hazard. It is also observed that areas nearer to NH-39 that lies in the fault zones i.e., Mao is also susceptible to high hazard. The landslide susceptibility map gives an first-hand impression for future land use planning and hazard mitigation purpose.</p>

Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 535
Author(s):  
Suhua Zhou ◽  
Shuaikang Zhou ◽  
Xin Tan

Landslide susceptibility mapping (LSM) is a cost-effective tool for landslide hazard mitigation. To date, no nationwide landslide susceptibility maps have been produced for the entire Kenyan territory. Hence, this work aimed to develop a landslide susceptibility map at the national level in Kenya using the fuzzy analytic hierarchy process method. First, a hierarchical evaluation index system containing 10 landslide contributing factors and their subclasses was established to produce a susceptibility map. Then, the weights of these indexes were determined through pairwise comparisons, in which triangular fuzzy numbers (TFNs) were employed to scale the relative importance based on the opinions of experts. Ultimately, these weights were merged in a hierarchical order to obtain the final landslide susceptibility map. The entire Kenyan territory was divided into five susceptibility levels. Areas with very low susceptibility covered 5.53% of the Kenyan territory, areas with low susceptibility covered 20.58%, areas with the moderate susceptibility covered 29.29%, areas with high susceptibility covered 29.16%, and areas with extremely high susceptibility covered 15.44% of Kenya. The resulting map was validated using an inventory of 425 historical landslides in Kenya. The results indicated that the TFN-AHP model showed a significantly improved performance (AUC = 0.86) compared with the conventional AHP (AUC = 0.72) in LSM for the study area. In total, 31.53% and 29.88% of known landslides occurred within the “extremely high” and “high” susceptibility zones, respectively. Only 8.24% and 1.65% of known landslides fell within the “low” and “very low” susceptibility zones, respectively. The map obtained as a result of this study is beneficial to inform planning and land resource management in Kenya.


2019 ◽  
Vol 80 (2) ◽  
pp. 105-116
Author(s):  
Sonja Djokanovic

Landslides represent a great problem in Serbia. According to current estimates 30-35 % of Serbia is affected by landslides. In this paper a landslide susceptibility analysis is done for SE Serbia. Study area covers 1507 km2. Relief is hilly or mountainous and characterized by high altitude differences. Analysis is done by geographic information system (GIS) and evaluation by analytic hierarchy process (AHP). For susceptibility assessment are used four factors: lithology, slope angle, distance to rivers and distance to faults. The most landslides are formed on slope steepness less than 30?. There is four classes of susceptibility in study area. Zone of very high susceptibility make 63.9 % of the study area. Zone of high susceptibility covers 15.7 % of the study area. The moderate class occupies 37.4% and zone classified as having low susceptibility accounts for 10 % of study area. Final landslide susceptibility map of SE Serbia is satisfactory.


2021 ◽  
Vol 16 (4) ◽  
pp. 521-528
Author(s):  
Nguyen Trung Kien ◽  
The Viet Tran ◽  
Vy Thi Hong Lien ◽  
Pham Le Hoang Linh ◽  
Nguyen Quoc Thanh ◽  
...  

Tinh Tuc town, Cao Bang province, Vietnam is prone to landslides due to the complexity of its climatic, geological, and geomorphological conditions. In this study, in order to produce a landslide susceptibility map, the modified analytical hierarchy process and landslide susceptibility analysis methods were used together with the layers, including: landslide inventory, slope, weathering crust, water storage, geology, land use, and distance from the road. In the study area, 98% of landslides occurred in highly or completely weathered units. Geology, land use, and water storage data layers were found to be important factors that are closely related with the occurrence of landslides. Although the weight of the “distance from the road” factor has a low value, the weight of layer “<100 m” has a high value. Therefore, the landslide susceptibility index very high is concentrated along the roads. For the validation of the predicted result, the landslide susceptibility map was compared with the landslide inventory map containing 47 landslides. The outcome shows that about 90% of these landslides fall into very high susceptibility zones.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1702 ◽  
Author(s):  
Ashraf Abdelkarim ◽  
Seham S. Al-Alola ◽  
Haya M. Alogayell ◽  
Soha A. Mohamed ◽  
Ibtesam I. Alkadi ◽  
...  

Understanding the dynamics of floods in dry environments and predicting an accurate flood hazard map considering multiple standards and conflicting objectives is of great political and planning importance in the Kingdom of Saudi Arabia’s vision for the year 2030, in order to reduce losses in lives, property, and infrastructure. The objectives of this study are (1) to develop a flood vulnerability map identifying flood-prone areas along the Al-Shamal train railway pathway; (2) to forecast the vulnerability of urban areas, agricultural land, and infrastructure to possible future floods hazard; and (3) to introduce strategic solutions and recommendations to mitigate and protect such areas from the negative impacts of floods. In order to achieve these objectives, multicriteria decision analysis based on geographic information systems (GIS-MCDA) is used to build a flood hazard map of the study area. The analytic hierarchy process (AHP) is applied to extract the weights of eight criteria which affect the areas which are prone to flooding hazards, including flow accumulation, distance from the wadi network, slope, rainfall density, drainage density, and rainfall speed. Furthermore, the receiver operating characteristic (ROC Curve) method is used to validate the presented flood hazard model. The results of the study reveal that there are five degrees of flooding hazard along the Al-Shamal train path, ranging from very high to very low. The high and very high hazard zones comprise 19.2 km along the path, which constitutes about 26.45% of the total path length, and are concentrated at the intersections of the Al-Shamal train pathway with the Bayer and Al-Makhrouk wadis. Moderate, low, and very low flood severity areas constitute nearly 53.39 km, representing 73.55% of the total length (72.59 km) of the track. These areas are concentrated at the intersection of the Al-Shamal train track with the Haseidah Al-Gharbiyeh and Hsaidah Umm Al-Nakhleh wadis. Urban and agricultural areas that are vulnerable to high and very high flooding hazards are shown to have areas of 29.23 km2 (22.12%) and 59.87 km2 (46.39%), respectively.


2021 ◽  
Vol 12 (2) ◽  
pp. 01-26
Author(s):  
Derya Ozturk ◽  
◽  
Ilknur Yilmaz ◽  
Ufuk Kirbas ◽  
◽  
...  

In this study, the flood hazard of Corum province (Turkey) was investigated using the Analytic Hierarchy Process (AHP), which is one of the most popular Multi-criteria Decision Analysis (MCDA) methods, based on Geographic Information System (GIS). As a result of the AHP process, Corum province was categorized into five flood hazard classes: very high, high, medium, low, and very low. It was determined that 3% of the total area is under a very high flood hazard, and 25% is considered a high flood hazard. To assess the validity of the flood hazard map, the results were compared with the historical flood inventory. Our hazard map was compatible with the historical flood inventory, and our hazard map can now be used to estimate the areas that are threatened by possible floods. When the existing structural measures are overlapped with the hazard map in Corum, it is understood that a large part of the structural measures carried out to date have focused on the areas of very high and high flood hazard in the flood hazard map. Future structural measures and detailed studies should now address other areas identified as under threat in the flood hazard map. Our results suggest that the hazard assessment based on MCDA is suitable for flood hazard mapping.


2021 ◽  
Vol 28 (3) ◽  
pp. 117-128
Author(s):  
Sara Zaki ◽  
Jehan Suleimany

This study deals with the application of geographical information system (GIS) datasets and methods to assess the landslide susceptibility in Wadi Hujran. The area has a rocky terrain and belongs to the Shaqlawa district of the Kurdistan Region of Iraq. The region is placed towards the Northeast side of Erbil city. The region covers an area of 18.56 Km2 (1856.1 ha) and consists of rough broken and stones. The watershed area is surrounded by North latitudes 36° 21' 53.514" to 36° 17' 49.7796" and East longitudes 44° 17' 5.658" to 44° 20' 9.06". Three factors, namely the morphometric, geological, and environmental, were used to prepare the landslide susceptibility index. The study made use of AHP method and prepared a landslide susceptibility map. Data related to geology, topography, hydrology, rainfall, and land use were used to prepare the map. Physical and statistical methods were used to validate the map. A heuristic approach was incorporated to produce the final susceptibility map. ArcGIS software was used to generate the landslide zones. A total of five landslide zones were generated, which varied from very low landslide zones (80.5) to very high landslide zone (84.5). The zones also included low landslide zone (1262.2), moderate landslide zone (1505.9), and high landslide zone (566.8), and the ratio of consistency in the present study was 0.06 AHP less than 1, and all the five zones in the study were compiled landslide zonation estimated.


Sign in / Sign up

Export Citation Format

Share Document