Landslide variation with morphometric factors using the GIS techniques: The case of Shaqlawa Forest

2021 ◽  
Vol 28 (3) ◽  
pp. 117-128
Author(s):  
Sara Zaki ◽  
Jehan Suleimany

This study deals with the application of geographical information system (GIS) datasets and methods to assess the landslide susceptibility in Wadi Hujran. The area has a rocky terrain and belongs to the Shaqlawa district of the Kurdistan Region of Iraq. The region is placed towards the Northeast side of Erbil city. The region covers an area of 18.56 Km2 (1856.1 ha) and consists of rough broken and stones. The watershed area is surrounded by North latitudes 36° 21' 53.514" to 36° 17' 49.7796" and East longitudes 44° 17' 5.658" to 44° 20' 9.06". Three factors, namely the morphometric, geological, and environmental, were used to prepare the landslide susceptibility index. The study made use of AHP method and prepared a landslide susceptibility map. Data related to geology, topography, hydrology, rainfall, and land use were used to prepare the map. Physical and statistical methods were used to validate the map. A heuristic approach was incorporated to produce the final susceptibility map. ArcGIS software was used to generate the landslide zones. A total of five landslide zones were generated, which varied from very low landslide zones (80.5) to very high landslide zone (84.5). The zones also included low landslide zone (1262.2), moderate landslide zone (1505.9), and high landslide zone (566.8), and the ratio of consistency in the present study was 0.06 AHP less than 1, and all the five zones in the study were compiled landslide zonation estimated.

2014 ◽  
Vol 28 (2) ◽  
Author(s):  
Muchtar S Solle ◽  
Paharuddin Paharuddin ◽  
Asmita Ahmad ◽  
Muh. Ansar

The objectives of this study are as  follows: first, to investigate the contributing parameters induced land sliding in the Budong-Budong watershed, and second, to construct landslide susceptibility zonation map.  In this study, the analytical hierarchy process (AHP) based on Geographical Information System (GIS) methods was used to produce map of landslide susceptibility. In this study area, more than 50% of total area were classified high (H) to very high (VH)  susceptibility landslide zone.  Mean while, 12% of total area were classified as  moderate (M)  and remaining were classified as  low (L) to very low (VL) susceptibility landslide zone. Almost area of Budong-Budong Wetershed were classified as VH and H susceptibility landslide zone underlying by Talaya (Tmtv), Lamasi (Toml) and Latimojong (Kls) Formation on the steep slope land.


2021 ◽  
Vol 16 (4) ◽  
pp. 521-528
Author(s):  
Nguyen Trung Kien ◽  
The Viet Tran ◽  
Vy Thi Hong Lien ◽  
Pham Le Hoang Linh ◽  
Nguyen Quoc Thanh ◽  
...  

Tinh Tuc town, Cao Bang province, Vietnam is prone to landslides due to the complexity of its climatic, geological, and geomorphological conditions. In this study, in order to produce a landslide susceptibility map, the modified analytical hierarchy process and landslide susceptibility analysis methods were used together with the layers, including: landslide inventory, slope, weathering crust, water storage, geology, land use, and distance from the road. In the study area, 98% of landslides occurred in highly or completely weathered units. Geology, land use, and water storage data layers were found to be important factors that are closely related with the occurrence of landslides. Although the weight of the “distance from the road” factor has a low value, the weight of layer “<100 m” has a high value. Therefore, the landslide susceptibility index very high is concentrated along the roads. For the validation of the predicted result, the landslide susceptibility map was compared with the landslide inventory map containing 47 landslides. The outcome shows that about 90% of these landslides fall into very high susceptibility zones.


2021 ◽  
Author(s):  
Digvijay Singh ◽  
Arnab Laha

&lt;p&gt;Landslides problems are one of the major natural hazards in the mountainous region. Every year due to the increase in anthropogenic factors and changing climate, the problem of landslides is increasing, which leads to huge loss of property and life. Landslide is a common and regular phenomenon in most of the northeastern states of India. &amp;#160;However, in recent past years, Manipur has experienced several landslides including mudslides during the rainy season. Manipur is a geologically young and geodynamically active area with many streams flowing parallel to fault lines. As a first step toward hazard management, a landslide susceptibility map is the prime necessity of the region. In this study, we have prepared a landslide hazard map of the state using freely available earth observations datasets and multi-criteria decision making technique, i.e., Analytic Hierarchy Process (AHP). For this purpose, lithology, rainfall, slope, aspect, relative relief, Topographic Wetness Index, and distance from road, river and fault were used as the parameters in AHP based on the understanding of their influence towards landslide in that region. The hazard map is classified into four hazard zones: Very High, High, Moderate, and Low. About 40% of the state falls under very high and high hazard zone, and the hilly regions such as Senapati and Chandel district are more susceptible to the landslide. Among the factors, slope and rainfall have a more significant contribution towards landslide hazard. It is also observed that areas nearer to NH-39 that lies in the fault zones i.e., Mao is also susceptible to high hazard. The landslide susceptibility map gives an first-hand impression for future land use planning and hazard mitigation purpose.&lt;/p&gt;


Author(s):  
Amol Sharma ◽  
Chander Prakash

Landslide susceptibility mapping has proved to be crucial tool for effective disaster management and planning strategies in mountainous regions. The present study is perused to investigate the changes in the landslide susceptibility of the Mandi district of Himachal Pradesh due to road construction. For this purpose, an inventory of 1723 landslides was generated from various sources. Out of these, 1199 (70%) landslides were taken in the training dataset to be used for modelling and prediction purposes, while 524 (30%) landslides were taken in the testing dataset to be used for validation purposes. Eleven landslide causative factors were selected from numerous hydrological, geological and topographical factors and were analyzed for landslide susceptibility mapping using three bivariate statistical models, namely; Frequency Ratio (FR), Certainty Factor (CF) and Shanon Entropy (SE). Two sets of LSM maps i.e. landslide susceptibility map natural (LSMN) and landslide susceptibility map road (LSMR), were generated using the above mentioned bivariate models and were divided into five landslide susceptibility classes namely; very low, low, medium, high and very high. These maps were analyzed for accuracy of prediction and validation using receiver operating characteristic (ROC) curves and area under curve (AUC) technique which indicated that all three bivariate statistical models performed satisfactorily with the SE model had the highest prediction and validation accuracy of 83-86%. Further analysis LSM maps confirmed that the percentage area in high and very high classes of land-slide susceptibility increased by 2.67-4.17% due to road construction activities in the study area.


2021 ◽  
Vol 16 (4) ◽  
pp. 529-538
Author(s):  
Thi Thanh Thuy Le ◽  
The Viet Tran ◽  
Viet Hung Hoang ◽  
Van Truong Bui ◽  
Thi Kien Trinh Bui ◽  
...  

Landslides are considered one of the most serious problems in the mountainous regions of the northern part of Vietnam due to the special topographic and geological conditions associated with the occurrence of tropical storms, steep slopes on hillsides, and human activities. This study initially identified areas susceptible to landslides in Ta Van Commune, Sapa District, Lao Cai Region using Analytical Hierarchy Analysis. Ten triggering and conditioning parameters were analyzed: elevation, slope, aspect, lithology, valley depth, relief amplitude, distance to roads, distance to faults, land use, and precipitation. The consistency index (CI) was 0.0995, indicating that no inconsistency in the decision-making process was detected during computation. The consistency ratio (CR) was computed for all factors and their classes were less than 0.1. The landslide susceptibility index (LSI) was computed and reclassified into five categories: very low, low, moderate, high, and very high. Approximately 9.9% of the whole area would be prone to landslide occurrence when the LSI value indicated at very high and high landslide susceptibility. The area under curve (AUC) of 0.75 illustrated that the used model provided good results for landslide susceptibility mapping in the study area. The results revealed that the predicted susceptibility levels were in good agreement with past landslides. The output also illustrated a gradual decrease in the density of landslide from the very high to the very low susceptible regions, which showed a considerable separation in the density values. Among the five classes, the highest landslide density of 0.01274 belonged to the very high susceptibility zone, followed by 0.00272 for the high susceptibility zone. The landslide susceptibility map presented in this paper would help local authorities adequately plan their landslide management process, especially in the very high and high susceptible zones.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1047 ◽  
Author(s):  
Chenglong Yu ◽  
Jianping Chen

The purpose of this study is to produce a landslide susceptibility map of Southeastern Helong City, Jilin Province, Northeastern China. According to the geological hazard survey (1:50,000) project of Helong city, a total of 83 landslides were mapped in the study area. The slope unit, which is classified based on the curvature watershed method, is selected as the mapping unit. Based on field investigations and previous studies, three groups of influencing Factors—Lithological factors, topographic factors, and geological environment factors (including ten influencing factors)—are selected as the influencing factors. Artificial neural networks (ANN’s) and support vector machines (SVM’s) are introduced to build the landslide susceptibility model. Five-fold cross-validation, the receiver operating characteristic curve, and statistical parameters are used to optimize model. The results show that the SVM model is the optimal model. The landslide susceptibility maps produced using the SVM model are classified into five grades—very high, high, moderate, low, and very low—and the areas of the five grades were 127.43, 151.60, 198.77, 491.19, and 506.91 km2, respectively. The very high and high susceptibility areas included 79.52% of the total landslides, demonstrating that the landslide susceptibility map produced in this paper is reasonable. Consequently, this study can serve as a guide for landslide prevention and for future land planning in the southeast of Helong city.


Author(s):  
E. Tazik ◽  
Z. Jahantab ◽  
M. Bakhtiari ◽  
A. Rezaei ◽  
S. Kazem Alavipanah

Landslides are among the most important natural hazards that lead to modification of the environment. Therefore, studying of this phenomenon is so important in many areas. Because of the climate conditions, geologic, and geomorphologic characteristics of the region, the purpose of this study was landslide hazard assessment using Fuzzy Logic, frequency ratio and Analytical Hierarchy Process method in Dozein basin, Iran. At first, landslides occurred in Dozein basin were identified using aerial photos and field studies. The influenced landslide parameters that were used in this study including slope, aspect, elevation, lithology, precipitation, land cover, distance from fault, distance from road and distance from river were obtained from different sources and maps. Using these factors and the identified landslide, the fuzzy membership values were calculated by frequency ratio. Then to account for the importance of each of the factors in the landslide susceptibility, weights of each factor were determined based on questionnaire and AHP method. Finally, fuzzy map of each factor was multiplied to its weight that obtained using AHP method. At the end, for computing prediction accuracy, the produced map was verified by comparing to existing landslide locations. These results indicate that the <b>combining the three methods</b> Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process method are relatively good estimators of landslide susceptibility in the study area. According to landslide susceptibility map about 51% of the occurred landslide fall into the high and very high susceptibility zones of the landslide susceptibility map, but approximately 26 % of them indeed located in the low and very low susceptibility zones.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 333
Author(s):  
Massimo Conforti ◽  
Fabio Ietto

Shallow landslides are destructive hazards and play an important role in landscape processes. The purpose of this paper is to evaluate the shallow landslide susceptibility and to investigate which predisposing factors control the spatial distribution of the collected instability phenomena. The GIS-based logistic regression model and jackknife test were respectively employed to achieve the scopes. The studied area falls in the Mesima basin, located in the southern Calabria (Italy). The research was based mainly on geomorphological study using both interpretation of Google Earth images and field surveys. Thus, 1511 shallow landslides were mapped and 18 predisposing factors (lithology, distance to faults, fault density, land use, soil texture, soil bulk density, soil erodibility, distance to streams, drainage density, elevation, slope gradient, slope aspect, local relief, plan curvature, profile curvature, TPI, TWI, and SPI) were recognized as influencing the shallow landslide susceptibility. The 70% of the collected shallow landslides were randomly divided into a training data set to build susceptibility model and the remaining 30% were used to validate the newly built model. The logistic regression model calculated the landslide probability of each pixel in the study area and produced the susceptibility map. Four classification methods were tested and compared between them, so the most reliable classification system was employed to the shallow landslide susceptibility map construction. In the susceptibility map, five classes were recognized as following: very low, low, moderate, high, and very high susceptibility. About 26.1% of the study area falls in high and very high susceptible classes and most of the landslides mapped (82.4%) occur in these classes. The accuracy of the predictive model was evaluated by using the ROC (receiver operating characteristics) curve approach, which showed an area under the curve (AUC) of 0.93, proving the excellent forecasting ability of the susceptibility model. The predisposing factors importance evaluation, using the jackknife test, revealed that slope gradient, TWI, soil texture and lithology were the most important factors; whereas, SPI, fault density and profile curvature have a least importance. According to these results, we conclude that the shallow landslide susceptibility map can be use as valuable tool both for land-use planning and for management and mitigation of the shallow landslide risk in the study area.


2020 ◽  
Vol 5 (2) ◽  
pp. 310-316
Author(s):  
Nurmala Ramadhani Lubis ◽  
Hairul Basri ◽  
Muhammad Rusdi

Abstrak. Tanah longsor adalah bencana hidrometeorologi yang sering terjadi di Indonesia. Tujuan dari penelitian ini adalah untuk mengetahui daerah kerawanan longsor di Kecamatan Tangse Kabupaten Pidie. Metode penelitian ini menggunakan Weighted Overlay yang didalamnya melibatkan pembobotan dan pengharkatan. Hasil penelitian menunjukan bahwa kelas bahaya longsor tidak rawan 573,61 ha (0,73%), agak rawan 30.600,38 ha (38,98%), rawan 46.526,72 ha (59,27%) dan sangat rawan 805,40 ha (1,03%). Selain itu, peta distribusi kerawanan longsor  ini juga dibandingkan dengan metode yang lain yaitu Indeks Storie dan juga TDMRC (Pusat Studi Tsunami dan Mitigasi Bencna). Setelah dibandingkan didapatkan persamaan yaitu pada jumlah kelas bahaya longsor dan juga perbedaan pada luas masing-masing kelas bahaya longsor.Analysing Landslides Suscepetibility Map in Sub District TangseAbstract. Landslide is a hydrometeorologycal disaster that usually happens in Indonesia. The main goal of this research was to determine the level of landslides susceptibility in Tangse Sub District, Pidie District. This research employed Weighted Overlay which involve weighting and scoring of each parameters. The results indicated  a variety of susceptibility clasess, which were; low 573.61 ha (0.73%), moderate 30,600.38 ha (38.98%), high 46,526.72 ha (59.27%) and very high 805.40 ha (1.03%). Moreover, distribution of landslide susceptibility map is also compared to others method, namely Indeks Storie and TDMRC (Tsunami Disaster Mitigation Research Center).  After comparing is obtained the equation number of landslides susceptibility classes and differences of areas.


Author(s):  
Ilham Alimuddin ◽  
Luhur Bayuaji ◽  
Haeruddin C. Maddi3 ◽  
Josaphat Tetuko Sri Sumantyo ◽  
Hiroaki Kuze1

Comprehensive information in natural disaster area is essential to prevent and mitigate people from further damage that might occur before and after such event. Mapping this area is one way to comprehend the situation when disaster strikes. Remote sensing data have been widely used along with GIS to create a susceptibility map. The objective of this study was to develop existing landslides susceptibility map by integrating optical satellite images of Landsat ETM and ASTER with Japanese Earth Resource Satellites (JERS-1) Synthetic Aperture Radar (SAR) data complemented by ground GPS and feature measurement into a Geographical Information Systems (GIS) platform. The study area was focused on a landslide event occurred on 26 March 2004 in Jeneberang Watershed of South Sulawesi, Indonesia. Change detection analysis was used to extract thematic information and the technique of Differential SAR Interferometry (DInSAR) was employed to detect slight surface displacement before the landslide event. The DInSAR processed images would be used to add as one weighted analysis factor in creating landslide susceptibility map. The result indicated that there was a slight movement of the slope prior to the event of landslide during the JERS-1 SAR data acquisition period of 1993-1998. Keywords: Optical Images, JERS-1 SAR, DInSAR, Tropical Landslide, GIS, Susceptibility Map 1. Introduction Recently, natural disasters increased in terms of frequency, complexity, scope, and destructive capacity. They have been particularly severe during the last few years when the world has experienced several large-scale natural disasters such as the Indian Ocean earthquake and tsunami; floods and forest fires in Europe, India and China, and drought in Africa (Sassa, 2005). Mapping such natural disaster areas is essential to prevent and mitigate people from further damage that might occur before and after such event. In Indonesia in particular, in these recent years natural disasters occurred more frequently compared to the last decade (BNPB, 2008). Once within a month in 2011, in three different islands, Indonesia was stricken by earthquake, tsunami, flash floods, and volcanic eruptions with severe fatalities to the people and environment. It was obvious that Indonesia was prone to natural disaster due to its position of being squeezed geologically by three major world plates and this fact makes Indonesia one of the most dangerous


Sign in / Sign up

Export Citation Format

Share Document