scholarly journals Sea-Breeze Dynamics and Convection Initiation: The Influence of Convective Parameterization in Weather and Climate Model Biases

2015 ◽  
Vol 28 (20) ◽  
pp. 8093-8108 ◽  
Author(s):  
Cathryn E. Birch ◽  
Malcolm J. Roberts ◽  
Luis Garcia-Carreras ◽  
Duncan Ackerley ◽  
Michael J. Reeder ◽  
...  

Abstract There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.

2017 ◽  
Vol 114 (6) ◽  
pp. 1258-1263 ◽  
Author(s):  
J. David Neelin ◽  
Sandeep Sahany ◽  
Samuel N. Stechmann ◽  
Diana N. Bernstein

Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.


2021 ◽  
Author(s):  
Elin Lundstad ◽  
Yuri Brugnera ◽  
Stefan Brönnimann

<p>This work describes the compilation of global instrumental climate data with a focus on the 18th and early 19th centuries. This database provides early instrumental data recovered for thousands of locations around the world. Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data”. Much of the data is taken from repositories we know (GHCN, ISTI, CRUTEM, Berkeley Earth, HISTALP). In addition, many of these stations have not been digitized before. Therefore,  we provide a new global collection of monthly averages of multivariable meteorological parameters before 1890 based on land-based meteorological station data. The product will be form as the most comprehensive global monthly climate data set, encompassing temperature, pressure, and precipitation as ever done. These data will be quality controlled and analyzed with respect to climate variability and they be assimilated into global climate model simulations to provide monthly global reconstructions. The collection has resulted in a completely new database that is uniform, where no interpolations are included. Therefore, we are left with climate reconstruction that becomes very authentic. This compilation will describe the procedure and various challenges we have encountered by creating a unified database that can later be used for e.g. models. It will also describe the strategy for quality control that has been adopted is a sequence of tests.</p>


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2018 ◽  
Vol 52 (5-6) ◽  
pp. 2685-2702 ◽  
Author(s):  
Elisa Palazzi ◽  
Luca Mortarini ◽  
Silvia Terzago ◽  
Jost von Hardenberg

2020 ◽  
Author(s):  
Richard Bintanja ◽  
Karin van der Wiel ◽  
Eveline van der Linden ◽  
Jesse Reusen ◽  
Linda Bogerd ◽  
...  

<p>The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes unknown. Here we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21<sup>st</sup> century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.</p>


2012 ◽  
Vol 5 (2) ◽  
pp. 999-1033 ◽  
Author(s):  
G. E. Bodeker ◽  
B. Hassler ◽  
P. J. Young ◽  
R. W. Portmann

Abstract. High vertical resolution ozone measurements from eight different satellite-based instruments have been merged with data from the global ozonesonde network to calculate monthly mean ozone values in 5° latitude zones. These "Tier 0" ozone number densities and ozone mixing ratios are provided on 70 altitude levels (1 to 70 km) and on 70 pressure levels spaced ~1 km apart (878.4 hPa to 0.046 hPa). The Tier 0 data are sparse and do not cover the entire globe or altitude range. To provide a gap-free database, a least squares regression model is fitted to the Tier 0 data and then evaluated globally. The regression model fit coefficients are expanded in Legendre polynomials to account for latitudinal structure, and in Fourier series to account for seasonality. Regression model fit coefficient patterns, which are two dimensional fields indexed by latitude and month of the year, from the N-th vertical level serve as an initial guess for the fit at the N+1th vertical level. The initial guess field for the first fit level (20 km/58.2 hPa) was derived by applying the regression model to total column ozone fields. Perturbations away from the initial guess are captured through the Legendre and Fourier expansions. By applying a single fit at each level, and using the approach of allowing the regression fits to change only slightly from one level to the next, the regression is less sensitive to measurement anomalies at individual stations or to individual satellite-based instruments. Particular attention is paid to ensuring that the low ozone abundances in the polar regions are captured. By summing different combinations of contributions from different regression model basis functions, four different "Tier 1" databases have been compiled for different intended uses. This database is suitable for assessing ozone fields from chemistry-climate model simulations or for providing the ozone boundary conditions for global climate model simulations that do not treat stratospheric chemistry interactively.


Sign in / Sign up

Export Citation Format

Share Document