A new approach for improving representation of boreal forest phenology in land surface models

Author(s):  
Titta Majasalmi ◽  
Miina Rautiainen

<p>In a boreal region, terrestrial vegetation carbon balance is controlled by vegetation phenology, which steers photosynthesis, respiration, and biomass turnover processes. In the absence of a full mechanistic understanding of environmental processes controlling vegetation phenology (i.e. senescence, dormancy, chilling), empirically-based models are often applied. These models are typically based on greenness proxies (obtained from satellite data) with fixed amplitude thresholds (e.g. of 15%, 50%, 90%) to determine timings of different phenological events. Yet, it is not known how well those percentiles correspond with the timings of events such as the green-up and the senescence. Especially in the boreal region, estimating timings of different phenological events across large spatial scales remains challenging due to the lack of sufficient ground validation data representative of both forest tree canopy and forest understory species compositions, which are both observed by a satellite sensor. From the land surface modeling perspective, there is a need to develop methods to improve the mapping of phenological events for prudent prediction of the land vegetation-atmosphere interactions under different future climates. In this study, we developed a new approach for calibrating boreal forest greenness amplitude thresholds which indicate timings of different phenological transitions in satellite data. The new approach to calibrate satellite-based greenness thresholds was demonstrated using boreal Finland as a case study area (60-70 N°). Using the approach, we computed satellite-based phenological events and compared them to ground reference data on temperature from a network of meteorological stations across Finland. We also investigated the effects of using different phenological events or ground reference temperature data on estimated growing season length. Results showed that while the standard greenness amplitude threshold values corresponded fairly well with the growing season start, the autumn phenology was not well captured by the standard greenness amplitude threshold values, which has direct impact on growing season length. Based on our data, boreal conifer forest senescence (default is 90%) corresponds with the timing of greenness amplitude of ~45%, while boreal conifer forest dormancy (default is 15%) corresponds with the timing of reaching greenness amplitude of ~0%. The approach allows flexible application across spatial scales (i.e. point or grid) and different satellite sensors, and may be combined with any land cover product, and it provides a meaningful linking between surface temperature data and seasonal reflectance measured by satellite sensors.</p>

2018 ◽  
Vol 10 (12) ◽  
pp. 1905 ◽  
Author(s):  
Qiang Ren ◽  
Chunyang He ◽  
Qingxu Huang ◽  
Yuyu Zhou

Urbanization can affect the ecological processes, local climate and human health in urban areas by changing the vegetation phenology. In the past 20 years, China has experienced rapid urbanization. Thus, it is imperative to understand the impact of urbanization on vegetation phenology in China. In this study, we quantitatively analyzed the impact of urbanization on vegetation phenology at the national and climate zone scales using remotely sensed data. We found that the start of the growing season (SOS) was advanced by approximately 2.4 days (P < 0.01), and the end of the growing season (EOS) was delayed by approximately 0.7 days (P < 0.01) in the urban areas compared to the rural areas. As a result, the growing season length (GSL) was extended by approximately 3.1 days (P < 0.01). The difference in the SOS and GSL between the urban and rural areas increased from 2001 to 2014, with an annual rate of 0.2 days (R2 = 0.39, P < 0.05) and 0.2 days (R2 = 0.31, P < 0.05), respectively. We also found that the impact of urbanization on vegetation phenology varied among different vegetation types at the national and climate zone levels (P < 0.05). The SOS was negatively correlated with land surface temperature (LST), with a correlation coefficient of −0.24 (P < 0.01), and EOS and GSL were positively correlated with LST, with correlation coefficients of 0.56 and 0.44 (P < 0.01), respectively. The improved understanding of the impact of urbanization on vegetation phenology from this study will be of great help for policy-makers in terms of developing relevant strategies to mitigate the negative environmental effects of urbanization in China.


Ecology ◽  
2020 ◽  
Vol 101 (9) ◽  
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Samuel A. Sartwell ◽  
Steven K. Schmidt ◽  
Katharine N. Suding

2021 ◽  
Author(s):  
Koffi Dodji Noumonvi ◽  
Joshua L. Ratcliffe ◽  
Mats Öquist ◽  
Mats B. Nilsson ◽  
Matthias Peichl

&lt;p&gt;Northern peatlands cover a small fraction of the earth&amp;#8217;s land surface, and yet they are one of the most important natural sources of atmospheric methane. With climate change causing rising temperatures, changes in water balance and increased growing season length, peatland contribution to atmospheric methane concentration is likely to increase, justifying the increased attention given to northern peatland methane dynamics. Northern peatlands often occur as heterogeneous complexes characterized by hydromorphologically distinct features from &lt; 1 m&amp;#178; to tens of km&amp;#178;, with differing physical, hydrological and chemical properties. The more commonly understood small-scale variation between hummocks, lawns and hollows has been well explored using chamber measurements. Single tower eddy covariance measurements, with a typical 95% flux footprint of &lt; 0.5 km&amp;#178;, have been used to assess the ecosystem scale methane exchange. However, how representative single tower flux measurements are of an entire mire complex is not well understood. To address this knowledge gap, the present study takes advantage of a network of four eddy covariance towers located less than 3 km apart at four mires within a typical boreal mire complex in northern Sweden. The variation of methane fluxes and its drivers between the four sites will be explored at different temporal scales, i.e. half-hourly, daily and at a growing-season scale.&lt;/p&gt;


2015 ◽  
Vol 29 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Alina Danielewska ◽  
Marek Urbaniak ◽  
Janusz Olejnik

Abstract The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.


2014 ◽  
Vol 20 (11) ◽  
pp. 3457-3470 ◽  
Author(s):  
Irene Garonna ◽  
Rogier de Jong ◽  
Allard J.W. de Wit ◽  
Caspar A. Mücher ◽  
Bernhard Schmid ◽  
...  

2019 ◽  
Vol 271 ◽  
pp. 46-53 ◽  
Author(s):  
Ping Ren ◽  
Emanuele Ziaco ◽  
Sergio Rossi ◽  
Franco Biondi ◽  
Peter Prislan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document