A high resolution three-dimensional model of ocean tides for the pan-arctic region

Author(s):  
Alfatih Ali ◽  
Malte Muller ◽  
Laurent Bertino ◽  
Arne Melson

<p>As grid resolutions of operational ocean models are becoming finer and approach closer to the coast, the importance of inclusion of tidal forcing in high resolution operational ocean forecasting systems has increasingly been recognized. In the current work,  we present a 3D general ocean circulation model of ocean tides in the pan-Arctic region at ~3km horizontal grid resolution and 50 hybrid layers in the vertical, thus representing both barotropic and internal tides. The model system is based on the Hybrid Coordinate Ocean Model (HYCOM)  coupled with the Los Alamos Sea Ice Model (CICE). The results showed good agreement when compared with observations from tide gauges and a data-assimilative global barotropic tidal model. Among other results, the evaluation includes results for tidal amplitude and phase of the most energetic constituents (M2, S2, K1 and Q1).   The model system is currently operational and its development is supported by the Copernicus Marine Environment Monitoring Service (CMEMS) where its forecasts are disseminated.</p>

2006 ◽  
Vol 3 (3) ◽  
pp. 637-669 ◽  
Author(s):  
S. Natale ◽  
R. Sorgente ◽  
S. Gaberšek ◽  
A. Ribotti ◽  
A. Olita

Abstract. Ocean forecasts over the Central Mediterranean, produced by a near real time regional scale system, have been evaluated in order to assess their predictability. The ocean circulation model has been forced at the surface by a medium, high or very high resolution atmospheric forcing. The simulated ocean parameters have been compared with satellite data and they were found to be generally in good agreement. High and very high resolution atmospheric forcings have been able to form noticeable, although short-lived, surface current structures, due to their ability to detect transient atmospheric disturbances. The existence of the current structures has not been directly assessed due to lack of measurements. The ocean model in the slave mode was not able to develop dynamics different from the driving coarse resolution model which provides the boundary conditions.


2018 ◽  
Vol 48 (5) ◽  
pp. 1139-1150 ◽  
Author(s):  
Lachlan Stoney ◽  
Kevin J. E. Walsh ◽  
Steven Thomas ◽  
Paul Spence ◽  
Alexander V. Babanin

Abstract A parameterization of turbulent mixing from unbroken surface waves is included in a 16-yr simulation within a high-resolution ocean circulation model (MOM5). This “surface wave mixing” (SWM) derives from the wave orbital motion and is parameterized as an additional term in a k-epsilon model. We show that SWM leads to significant changes in sea surface temperatures but smaller changes in ocean heat content, and show the extent to which these changes can reduce pre-existing model biases with respect to observed data. Specifically, SWM leads to a widespread improvement in sea surface temperature in both hemispheres in summer and winter, while for ocean heat content the improvements are less clear. In addition, we show that introducing SWM can lead to an accumulation of wave-induced ocean heat content between years. While it has been well established that secular positive trends exist in global wave heights, we find that such trends are relatively unimportant in driving the accumulation of wave-induced ocean heat content. Rather, in response to the new source of mixing, the simulated ocean climate evolves toward a new equilibrium with greater total ocean heat content.


2020 ◽  
Vol 59 (5) ◽  
pp. 793-817 ◽  
Author(s):  
Alexander Gavrikov ◽  
Sergey K. Gulev ◽  
Margarita Markina ◽  
Natalia Tilinina ◽  
Polina Verezemskaya ◽  
...  

AbstractWe present in this paper the results of the Russian Academy of Sciences North Atlantic Atmospheric Downscaling (RAS-NAAD) project, which provides a 40-yr 3D hindcast of the North Atlantic (10°–80°N) atmosphere at 14-km spatial resolution with 50 levels in the vertical direction (up to 50 hPa), performed with a regional setting of the WRF-ARW 3.8.1 model for the period 1979–2018 and forced by ERA-Interim as a lateral boundary condition. The dataset provides a variety of surface and free-atmosphere parameters at sigma model levels and meets many demands of meteorologists, climate scientists, and oceanographers working in both research and operational domains. Three-dimensional model output at 3-hourly time resolution is freely available to the users. Our evaluation demonstrates a realistic representation of most characteristics in both datasets and also identifies biases mostly in the ice-covered regions. High-resolution and nonhydrostatic model settings in NAAD resolve mesoscale dynamics first of all in the subpolar latitudes. NAAD also provides a new view of the North Atlantic extratropical cyclone activity with a much larger number of cyclones as compared with most reanalyses. It also effectively captures highly localized mechanisms of atmospheric moisture transports. Applications of NAAD to ocean circulation and wave modeling are demonstrated.


2016 ◽  
Vol 46 (5) ◽  
pp. 1399-1419 ◽  
Author(s):  
Maarten C. Buijsman ◽  
Joseph K. Ansong ◽  
Brian K. Arbic ◽  
James G. Richman ◽  
Jay F. Shriver ◽  
...  

AbstractThe effects of a parameterized linear internal wave drag on the semidiurnal barotropic and baroclinic energetics of a realistically forced, three-dimensional global ocean model are analyzed. Although the main purpose of the parameterization is to improve the surface tides, it also influences the internal tides. The relatively coarse resolution of the model of ~8 km only permits the generation and propagation of the first three vertical modes. Hence, this wave drag parameterization represents the energy conversion to and the subsequent breaking of the unresolved high modes. The total tidal energy input and the spatial distribution of the barotropic energy loss agree with the Ocean Topography Experiment (TOPEX)/Poseidon (TPXO) tidal inversion model. The wave drag overestimates the high-mode conversion at ocean ridges as measured against regional high-resolution models. The wave drag also damps the low-mode internal tides as they propagate away from their generation sites. Hence, it can be considered a scattering parameterization, causing more than 50% of the deep-water dissipation of the internal tides. In the near field, most of the baroclinic dissipation is attributed to viscous and numerical dissipation. The far-field decay of the simulated internal tides is in agreement with satellite altimetry and falls within the broad range of Argo-inferred dissipation rates. In the simulation, about 12% of the semidiurnal internal tide energy generated in deep water reaches the continental margins.


2012 ◽  
Vol 117 (C10) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. F. Shriver ◽  
B. K. Arbic ◽  
J. G. Richman ◽  
R. D. Ray ◽  
E. J. Metzger ◽  
...  

2005 ◽  
Vol 35 (10) ◽  
pp. 1891-1910 ◽  
Author(s):  
David Ferreira ◽  
John Marshall ◽  
Patrick Heimbach

Abstract A global ocean circulation model is formulated in terms of the “residual mean” and used to study eddy–mean flow interaction. Adjoint techniques are used to compute the three-dimensional eddy stress field that minimizes the departure of the coarse-resolution model from climatological observations of temperature. The resulting 3D maps of eddy stress and residual-mean circulation yield a wealth of information about the role of eddies in large-scale ocean circulation. In eddy-rich regions such as the Southern Ocean, the Kuroshio, and the Gulf Stream, eddy stresses have an amplitude comparable to the wind stress, of order 0.2 N m−2, and carry momentum from the surface down to the bottom, where they are balanced by mountain form drag. From the optimized eddy stress, 3D maps of horizontal eddy diffusivity κ are inferred. The diffusivities have a well-defined large-scale structure whose prominent features are 1) large values of κ (up to 4000 m2 s−1) in the western boundary currents and on the equatorial flank of the Antarctic Circumpolar Current and 2) a surface intensification of κ, suggestive of a dependence on the stratification N 2. It is shown that implementation of an eddy parameterization scheme in which the eddy diffusivity has an N 2 dependence significantly improves the climatology of the ocean model state relative to that obtained using a spatially uniform diffusivity.


2012 ◽  
Vol 53 (60) ◽  
pp. 59-69 ◽  
Author(s):  
Patrick Heimbach ◽  
Martin Losch

AbstractWe investigate the sensitivity of sub-ice-shelf melt rates under Pine Island Ice Shelf, West Antarctica, to changes in the oceanic state using an adjoint ocean model that is capable of representing the flow in sub-ice-shelf cavities. The adjoint code is based on algorithmic differentiation (AD) of the Massachusetts Institute of Technology’s ocean general circulation model (MITgcm). The adjoint model was extended by adding into the AD process the corresponding sub-ice-shelf cavity code, which implements a three-equation thermodynamic melt-rate parameterization to infer heat and freshwater fluxes at the ice-shelf/ocean boundary. The inferred sensitivities reveal dominant timescales of 30–60 days over which the shelf exit is connected to the deep interior via advective processes. They exhibit rich three-dimensional time-evolving patterns that can be understood in terms of a combination of the buoyancy forcing by inflowing water masses, the cavity geometry and the effect of rotation and topography in steering the flow in the presence of prominent features in the bedrock bathymetry. Dominant sensitivity pathways are found over a sill, as well as ‘shadow regions’ of very low sensitivities. To the extent that these transient patterns are robust they carry important information for decision-making in observation deployment and monitoring.


Sign in / Sign up

Export Citation Format

Share Document