Detection of soil pipe network by electromagnetic induction (EMI) in relation to the high resolution UAV data

Author(s):  
Anita Bernatek-Jakiel ◽  
Marta Kondracka ◽  
Maciej Liro

<p>Subsurface erosion by soil piping is a widespread land degradation process that occurs in different soil types around the world. Recent studies have shown that piping erosion may lead to the significant soil loss and disturbances of ground surface. This process accelerates also gully erosion. However, it is still omitted in hydrological models of a catchment, as well as in soil and water erosion models. It seems that the main problem in soil piping studies lies on the basic issue, i.e., the detection of subsurface tunnels (soil pipes). As geophysical methods enable the exploration below the ground surface, they are promising in soil piping studies.</p><p> </p><p>This study aims to evaluate the suitability of the electromagnetic induction (EMI) to detect subsurface network of soil pipes. The detailed study was conducted in the small catchment (Cisowiec) in the Bieszczady Mts. (the Eastern Carpathians, SE Poland), where pipes develop in Cambisols. The measurements were carried out using a conductivity meter EM38-MK2 (Geonics) in both vertical and horizontal measuring dipole orientations. The EM38-MK2 provided simultaneous measurements of apparent electrical conductivity with two transmitter receiver coil separation (0.5 m and 1 m). In order to compare subsurface data with the surface response (i.e., depressions and collapses), the high resolution DEM and orthophotos have been produced. These data have been prepared using Structure from Motion (SfM) technique based on the images taken from the low altitude by an Unmanned Aerial Vehicle (UAV; DJI Phantom-4 equipped with a 1' camera). The UAV-derived products (orthophotos and DEM) have the resolution of 0.014 x 0.014 m and point density of 9240 per 1 m<sup>2</sup>.</p><p> </p><p>The EMI results are presented on the maps that gathered data at three depths (0.4 m, 0.75 m, 1.5 m). The results revealed the soil pipes as areas characterized by higher electrical conductivity than the surroundings. The spatial distribution of subsurface tunnels corresponds with the ground depressions and collapses detected in the field and seen on the high resolution DEM and orthophoto. The use of EMI in piping research has been evaluated.</p><p> </p><p>The study is supported by the National Science Centre, Poland within the first author’s project SONATINA 1 (2017/24/C/ST10/00114).</p>

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. EN1-EN14 ◽  
Author(s):  
Xihe Tan ◽  
Achim Mester ◽  
Christian von Hebel ◽  
Egon Zimmermann ◽  
Harry Vereecken ◽  
...  

Electromagnetic induction (EMI) is a contactless and fast geophysical measurement technique. Frequency-domain EMI systems are available as portable rigid booms with fixed separations up to approximately 4 m between the transmitter and the receivers. These EMI systems are often used for high-resolution characterization of the upper subsurface meters (up to depths of approximately 1.5 times the maximum coil separation). The availability of multiconfiguration EMI systems, which measure multiple apparent electrical conductivity ([Formula: see text]) values of different but overlapping soil volumes, enables EMI data inversions to estimate electrical conductivity ([Formula: see text]) changes with depth. However, most EMI systems currently do not provide absolute [Formula: see text] values, but erroneous shifts occur due to calibration problems, which hinder a reliable inversion of the data. Instead of using physical soil data or additional methods to calibrate the EMI data, we have used an efficient and accurate simultaneous calibration and inversion approach to avoid a possible bias of other methods while reducing the acquisition time for the calibration. By measuring at multiple elevations above the ground surface using a multiconfiguration EMI system, we simultaneously obtain multiplicative and additive calibration factors for each coil configuration plus an inverted layered subsurface electrical conductivity model at the measuring location. Using synthetic data, we verify our approach. Experimental data from five different calibration positions along a transect line showed similar calibration results as the data obtained by more elaborate vertical electrical sounding reference measurements. The synthetic and experimental results demonstrate that the multielevation calibration and inversion approach is a promising tool for quantitative electrical conductivity analyses.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.


2020 ◽  
Vol 19 (4) ◽  
pp. 507-516
Author(s):  
Le Ngoc Thanh ◽  
Nguyen Quang Dung ◽  
Luu Hai Tung

Assessment of soil and soil-water salinity is essential in agricultural production, therefore it is necessary to find out the non-costly, effective, rapid and reliable integrated methodology for this purpose. The paper presents the results of using the electromagnetic induction instrument EM31-MK2Ô in combination with collecting and analyzing soil and soil-water samples, and applying GIS and geostatistical techniques to assess the current status of soil and soil-water salinity in Ben Tre province. Apparent soil electrical conductivity ECa measured from ground surface to 6 m in depth increases from inland to the sea in northwest - southeast direction; ECa is closely related to topsoil salinity to 30 cm deep and to soil-water salinity at depth of 10–100 cm. Current status of soil and soil-water salinity in 2018 was assessed with a 4-fold increase in information, from 16 km2/data point to 4 km2/data point. Consequently four maps were established, consisting of electrical conductivity ECe and total solube salt TSS distributions of soil; electrical conductivity σw and total dissolved solid TDS distributions of soil-water.


2021 ◽  
Author(s):  
Ulrich Polom ◽  
Rebekka Mecking ◽  
Phillip Leineweber ◽  
Andreas Omlin

<p>In the North German Basin salt tectonics generated a wide range of evaporite structures since the Upper Triassic, resulting in e.g. extended salt walls, salt diapirs, and salt pillows in the depth range up to 8 km. Due to their trap and seal properties these structures were in the focus of hydrocarbon exploration over many decades, leading to an excellent mapping of their geometries below 300 m in depth. During salt rise Rotliegend formations were partly involved as a constituent. Some structures penetrated the salt table, some also the former surface. Dissolution (subrosion) and erosion of the salt cap rock by meteoric water took place, combined with several glacial and intraglacial overprints. Finally the salt structures were covered by pleistocene and holocene sediments. This situation partly resulted in proneness for ongoing karstification of the salt cap rock, leading to e.g. local subsidence and sinkhole occurrence at the surface. The geometry, structure and internal lithology of these shallow salt cap rocks are widely unknown. Expanding urban and industrial development, water resources management and increasing climate change effects enhance the demands for shallow mapping and characterization of these structures regarding save building grounds and sustainable water resources.</p><p>Results of shallow drilling investigations of the salt cap rock and the overburden show unexpectedly heterogenous subsurface conditions, yielding to limited success towards mapping and characterization. Thus, shallow high-resolution geophysical methods are in demand to close the gaps with preferred focus of applicability in urban and industrial environments. Method evaluations starting in 2010 geared towards shallow high-resolution reflection seismic to meet the requirements of both depth penetration and structure resolution. Since 2017 a combination of S-wave and P-wave seismic methods including depth calibrations by Vertical Seismic Profiling (VSP) enabled 2.5D subsurface imaging starting few meters below the surface up to several hundred meters depth in 0.5-5 m resolution range, respectively. The resulting profiles image strong variations along the boundaries and on top of the salt cap rock. Beside improved mapping capabilities, aim of research is the development of characteristic data features to differentiate save and non-save areas.</p>


2004 ◽  
pp. 67-78 ◽  
Author(s):  
MARCIA K. SCHULMEISTER ◽  
JAMES J. BUTLER ◽  
EVAN K. FRANSEEN ◽  
DOUGLAS A. WYSOCKI ◽  
JAMES A. DOOLITTLE

Sign in / Sign up

Export Citation Format

Share Document