Phosphorus regulates ecosystem carbon dynamics after permafrost thaw

Author(s):  
Yuanhe Yang ◽  
Guibiao Yang ◽  
Yunfeng Peng ◽  
Benjamin W. Abbott ◽  
Christina Biasi ◽  
...  

<p>The ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that the potential nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. Here we combined two-year field observations along a permafrost thaw sequence (constituted by four thaw stages, <em>i</em>.<em>e</em>., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m<sup>-2</sup> yr<sup>-1</sup> and 10 g P m<sup>-2</sup> yr<sup>-1</sup>, respectively) in a Tibetan swamp meadow to evaluate ecosystem C-nutrient interactions upon permafrost thaw. Our results showed that changes in soil P availability rather than N availability played an important role in regulating the increases in gross primary productivity and the decreases in net ecosystem exchange along the thaw sequence. The fertilization experiment further confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.</p>

Author(s):  
Ching Chan ◽  
Ya-Yun Liao ◽  
Tzyy-Jen Chiou

Abstract Phosphorus (P) is the second most essential macronutrient in terms of limiting plant growth. The genes involved in P acquisition, transport, storage, utilization and respective regulation have been extensively studied. In addition, significant attention has been given to the crosstalk between P and other environmental stresses. In this review, we summarize recent discoveries pertaining to the emerging function of P in plant immunity. The roles of external soil P availability, internal cellular P in plants, P starvation signaling machinery and phosphate transporters in biotic interactions are discussed. We also highlight the impact of several phytohormones on the signaling convergence between cellular P and immune responses. This information may serve as a foundation for dissecting the molecular interaction between nutrient responses and plant immunity.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105459
Author(s):  
Liuming Yang ◽  
Zhijie Yang ◽  
Xiaojian Zhong ◽  
Chao Xu ◽  
Yanyu Lin ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 326-334 ◽  
Author(s):  
J. Yuan ◽  
L. Wang ◽  
S. Wang ◽  
Y. Wang ◽  
H. Wang ◽  
...  

2019 ◽  
Vol 54 ◽  
pp. 11-19 ◽  
Author(s):  
Martin Kohler ◽  
Jörg Niederberger ◽  
Adrian Wichser ◽  
Peggy Bierbaß ◽  
Thomas Rötzer ◽  
...  

2009 ◽  
Vol 60 (2) ◽  
pp. 124 ◽  
Author(s):  
Alan E. Richardson ◽  
Peter J. Hocking ◽  
Richard J. Simpson ◽  
Timothy S. George

Phosphorus (P) is an important nutrient required for plant growth and its management in soil is critical to ensure sustainable and profitable agriculture that has minimal impact on the environment. Although soils may contain a large amount of total P, only a small proportion is immediately available to plants. Australian soils often have low availability of P for plant growth and P-based fertilisers are, therefore, commonly used to correct P deficiency and to maintain productivity. For many soils, the sustained use of P fertiliser has resulted in an accumulation of total P, a proportion of which is in forms that are poorly available to most plants. The efficiency with which different P fertilisers are used in agricultural systems depends on their capacity to supply P in a soluble form that is available for plant uptake (i.e. as orthophosphate anions). In addition to fertiliser source, the availability of P in soil is influenced to a large extent by physico-chemical and biological properties of the soil. Plant access to soil P is further affected by root characteristics (e.g. rate of growth, specific root length, and density and length of root hairs) and biochemical processes that occur at the soil–root interface. The ability of roots to effectively explore soil, the release of exudates (e.g. organic anions and phosphatases) from roots that influence soil P availability, and the association of roots with soil microorganisms such as mycorrhizal fungi are particularly important. These processes occur as a natural response of plants to P deficiency and, through better understanding, may provide opportunities for improving plant access to soil and fertiliser P in conventional and organic agricultural systems.


2007 ◽  
Vol 23 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Travis Idol ◽  
Patrick J. Baker ◽  
Dean Meason

Precipitation and temperature are known to have important effects on forest productivity, but these effects may be strongly mediated through their influence on soil and leaf nutrients. We measured indicators of forest productivity and soil and leaf nutrients across independent gradients of precipitation and elevation/temperature in lower montane Hawaiian forests dominated by a single overstorey species, Acacia koa, situated on 1500–3000-y-old soils that were mixtures of volcanic ash and basalt. Stand basal area was highest at the wettest site, 2000 mm mean annual precipitation (MAP), and leaf N and P were lowest at the driest site, 1000 mm MAP. Soil N availability and leaf N concentration declined across an 850-m elevation gradient, but this was not correlated with stand basal area or soil organic matter content. Across all stands, basal area was negatively correlated with the exchangeable soil P fraction. As well, the soil C:N ratio was negatively correlated with both soil P availability and the size of the primary mineral P fraction. Soil P availability and weathering appear to be important determinants of soil organic matter quantity and quality. Overall, precipitation is the major driving force for forest productivity, but P weathering and availability play important roles in limiting productivity in wetter sites and in controlling soil organic matter dynamics in these N-fixing forests.


Author(s):  
Noura Ziadi ◽  
Xiangru Zhang ◽  
Bernard Gagnon ◽  
Eric Manirakiza

In recent decades, there has been a growing interest in the recycling of organic materials such as paper mill biosolids (PB) and biochar for use as soil amendments. However, the benefits of co-application of PB and biochar and its effects on soil P availability remain unknown. An incubation study was conducted on two acidic soils to assess the effect of two PB types (2.5% w/w) co-applied with three rates (0%, 2.5%, and 5% w/w) of pine (Pinus strobus L.) biochar on soil P fractions. An unfertilized control and a mineral NP fertilizer were used as a reference. Soil P fractions were determined by Hedley procedure after 2 and 16 weeks of incubation. Material fractionation indicated that the PB containing the highest total P and the lowest Al content had the highest proportion of labile P, whereas most P in the biochar was in a stable form. The incubation study revealed that the P-rich PB increased P availability in both soils to a level comparable to mineral fertilizer at the end of the incubation. The addition of biochar to PB, however, did not affect soil P availability, but the highest rate induced a conversion of P fixed to Al and Fe oxides towards recalcitrant forms, particularly in the sandy loam soil. We conclude that co-applying biochar and PB could be more beneficial than application biochar alone and soils amended with such a mixture would be expected to release part of their P slowly over a longer period of time.


Sign in / Sign up

Export Citation Format

Share Document