Soil phosphorus fractionation after co-applying biochar and paper mill biosolids

Author(s):  
Noura Ziadi ◽  
Xiangru Zhang ◽  
Bernard Gagnon ◽  
Eric Manirakiza

In recent decades, there has been a growing interest in the recycling of organic materials such as paper mill biosolids (PB) and biochar for use as soil amendments. However, the benefits of co-application of PB and biochar and its effects on soil P availability remain unknown. An incubation study was conducted on two acidic soils to assess the effect of two PB types (2.5% w/w) co-applied with three rates (0%, 2.5%, and 5% w/w) of pine (Pinus strobus L.) biochar on soil P fractions. An unfertilized control and a mineral NP fertilizer were used as a reference. Soil P fractions were determined by Hedley procedure after 2 and 16 weeks of incubation. Material fractionation indicated that the PB containing the highest total P and the lowest Al content had the highest proportion of labile P, whereas most P in the biochar was in a stable form. The incubation study revealed that the P-rich PB increased P availability in both soils to a level comparable to mineral fertilizer at the end of the incubation. The addition of biochar to PB, however, did not affect soil P availability, but the highest rate induced a conversion of P fixed to Al and Fe oxides towards recalcitrant forms, particularly in the sandy loam soil. We conclude that co-applying biochar and PB could be more beneficial than application biochar alone and soils amended with such a mixture would be expected to release part of their P slowly over a longer period of time.

2010 ◽  
Vol 90 (3) ◽  
pp. 467-479 ◽  
Author(s):  
J -L. Fan ◽  
N. Ziadi ◽  
B. Gagnon ◽  
Z -Y. Hu

Industrial by-products such as paper mill biosolids (PB) and different liming materials have been used as fertilizers and amendments in agricultural soils for many decades. However, little is known about the effects of their repeated application on soil nutrient availability, particularly phosphorus (P). A 6-yr field study (2000-2005) was conducted in the province of Quebec to investigate the effect of repeated annual applications of different PB and industrial by-products on selected soil chemical properties, especially soil P fractions. Different PB rates (0 to 90 Mg wet ha-1) and several liming products (lime mud, wood ash, calcitic lime, and Mg by-products) were annually applied to field crops after seeding. Soils were sampled before seeding in May 2003 and at harvest in October 2005. Results showed that HCl-P was the largest P pool, accounting for about 64% of the total P fraction, and that the repeated applications of liming products significantly increased this pool and decreased the organic P pools. The NaOH-Po and residual-P were significantly lower in 2005 than in 2003, indicating that PB application without supplemental P fertilizer inputs enhanced the mobility and/or mineralization of NaOH-Po and the transformation of recalcitrant P to more labile forms with time. Lime mud (LM) was found to be the best liming material owing to its high neutralization capacity and positive effect on soil P availability over time. Key words: Paper mill biosolids, alkaline residuals, lime, wood ash, soil P fractions


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 172 ◽  
Author(s):  
Huixia Tian ◽  
Xiaoqin Cheng ◽  
Hairong Han ◽  
Hongyuan Jing ◽  
Xujun Liu ◽  
...  

Thinning is a common management practice in forest ecosystems. However, understanding whether thinning treatment will change the availability of phosphorus (P) in soils, and the effect of thinning on the seasonal dynamics of soil P fractions, are still limited. The objective of the present study was to assess seasonal variations in soil P fractions under different forest thinning management strategies in a Larch (Larix spp.) plantation in northern China. To accomplish this, we examined soil P fractions, soil physical–chemical properties, and litter biomass under control (CK), light (LT), moderate (MT) and high thinning (HT) treatments. Data were collected during the growing season of 2017. We found that most P fractions varied seasonally at different soil depths, with the highest values occurring in the summer and autumn. When compared to CK, MT enhanced the inorganic P (Pi) concentration extracted by resin strip (R-Pi). Labile organic P (Labile Po), moderately labile P and total P (TP) also increased in both MT and HT treatments irrespective of season. In contrast, less-labile Pi and Po fractions were lower in LT than in CK, especially when examining deeper soil layers. Our results suggest that LT leads to a strong ability to utilize Po and less-labile Pi. Moreover, the effect of thinning did not tend to increase with thinning intensity, P availability was maximized at the MT. Ultimately, we show that MT can improve soil P bioavailability and is recommended in Larix principis-rupprechtii Mayr. plantations of North China. Our results emphasize that the effect of thinning management on soil microenvironment is an important basis for evaluating soil nutrients such as soil P bioavailability.


2019 ◽  
Vol 11 (4) ◽  
pp. 1006 ◽  
Author(s):  
Ying Han ◽  
Xiangwei Chen ◽  
Byoungkoo Choi

Freeze–thaw cycles stimulate the release of available soil phosphorus (P) in winter, and biochar as a soil amendment could improve P availability. Nevertheless, it is unclear how freeze–thaw cycles and biochar amendment interact to affect the soil P fractions and their availability in winter, particularly under different soil water conditions. We simulateda freeze–thaw cycle experimentto assess the effects of three factors on soil P fractions: soil moisture content (22%, 31%, and 45%), frequencies of freeze–thaw cycles (0, 1, 3, 6, and 12 times) and biochar amendment (soil and biochar-amended soil). Modified Hedley sequential P fractionation was conducted to measure the soil P fractions. Increasing the number of freeze–thaw cycles increased soil labile P fractions in the soil with the lowest moisture content (22%). After biochar amendment, the content of labile P decreased as the number of freeze–thaw cycles increased. Biochar amendment enhanced P availability in Mollisols owing to the direct effect of NaOH-Po, which has a large direct path coefficient. Principal components analysis showed that moisture content was a major factor influencing the variation in the P fractions. The P fractions were separated by the interactive effects of biochar amendment and freeze–thaw cycles in soils with a higher moisture content (45%), indicating that the effects of freeze–thaw cycles on P availability appear to be more pronounced in biochar-amended Mollisols of higher water contents.


2012 ◽  
Vol 137 ◽  
pp. 221-229 ◽  
Author(s):  
Bin Hu ◽  
Yu Jia ◽  
Zhi-hong Zhao ◽  
Feng-min Li ◽  
Kadambot H.M. Siddique

2021 ◽  
Author(s):  
Lingling Zhang ◽  
Xianzhen Luo ◽  
Hans Lambers ◽  
Guihua Zhang ◽  
Nan Liu ◽  
...  

AbstractNo studies have explored how the invasive species of Mikania micranatha and Chromolaena odoratan adjust leaf phosphorus (P) among inorganic P (Pi) and organic P fractions to adapt the low soil P availability, especially under elevated CO2 concentrations ([CO2]) and nitrogen (N) deposition. Here, we address this by measuring foliar total N and P concentrations as well as functional P fractions (i.e. Pi, metabolic P, lipid P, nucleic acids P, and residual P) of both invasive species and a native species (Paederia. scandens) growing under different P supplies, N, and N+P addition under both ambient and elevated [CO2]. Phosphorus addition greatly increased plant biomass and foliar P concentrations but did not significantly affect foliar N concentration and leaf mass per unit leaf area (LMA). In response to P addition, the concentration of metabolic P increased the most, followed by that of nucleic acid P, Pi, and lipid P, in all species by an average of 754%, 82%, 53%, and 38%, respectively. However, elevated [CO2] and N addition weakened this positive effect on concentrations of foliar P fractions in the invasive species. Our results indicate that elevated [CO2] and N addition allowed the invasive species to acclimate to a low soil P availability, supporting their successful invasion, through greatly reducing P allocation to non-metabolic foliar P fractions (phospholipids and nucleic acid P) to meet their demand for metabolic P and Pi for photosynthesis, rather than altering LMA.


2021 ◽  
Author(s):  
Zhongming Han ◽  
Jianmin Shi ◽  
Jiayin Pang ◽  
Li Yan ◽  
Patrick M Finnegan ◽  
...  

Abstract Background and aims Phosphorus (P) and nitrogen (N) are essential nutrients that frequently limit primary productivity in terrestrial ecosystems. Efficient use of these nutrients is important for plants growing in nutrient-poor environments. Plants generally reduce foliar P concentration in response to low soil P availability. We aimed to assess ecophysiological mechanisms and adaptive strategies for efficient use of P in Banksia attenuata (Proteaceae), naturally occurring on deep sand, and B. sessilis, occurring on shallow sand over laterite or limestone, by comparing allocation of P among foliar P fractions. Methods We carried out pot experiments with slow-growing B. attenuata, which resprouts after fire, and faster-growing opportunistic B. sessilis, which is killed by fire, on substrates with different P availability using a randomised complete block design. We measured leaf P and N concentrations, photosynthesis, leaf mass per area, relative growth rate, and P allocated to major biochemical fractions in B. attenuata and B. sessilis. Key results The two species had similarly low foliar total P concentrations, but distinct patterns of P allocation to P-containing fractions. The foliar total N concentration of B. sessilis was greater than that of B. attenuata on all substrates. The foliar total P and N concentrations in both species decreased with decreasing P availability. The relative growth rate of both species was positively correlated with concentrations of both foliar nucleic acid P and total N, but there was no correlation with other P fractions. Faster-growing B. sessilis allocated more P to nucleic acids than B. attenuata did, but other fractions were similar. Conclusions The nutrient-allocation patterns in faster-growing opportunistic B. sessilis and slower-growing B. attenuata revealed different strategies in response to soil P availability which matched their contrasting growth strategy.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105459
Author(s):  
Liuming Yang ◽  
Zhijie Yang ◽  
Xiaojian Zhong ◽  
Chao Xu ◽  
Yanyu Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document