Modeling public charging infrastructure considering spatial distribution of e-car ownership and points of interests

Author(s):  
Philip Gauglitz ◽  
David Geiger ◽  
Jan Ulffers ◽  
Evamaria Zauner

<div> <div> <p>Considering climate change, it is essential to reduce CO<sub>2</sub> emissions. The provision of charging infrastructure in public spaces for electromobility – along with the substitution of conventional power generation with renewable energies – can contribute to the energy transition in the transport sector. Scenarios for the spatial distribution of this charging infrastructure can help to exemplify the need for charging points and their impact, for example, on power grids. We present an approach based both on the usage frequency of points of interest (POIs) and on the need for charging points in residential areas. This approach is validated in several steps and compared with alternative methods, such as a machine learning model trained with existing charging point utilization data.</p> <p>Our approach uses two drivers to model the demand for public charging infrastructure. The first driver represents the demand for more charging stations to compensate for the lack of home charging stations and is derived from a previously developed and published model addressing electric-vehicle ownership (with and without home charging options) in households. The second driver represents the demand for public charging infrastructure at POIs. Their locations are derived from Open Street Map (OSM) data and weighted based on an evaluation of movement profiles from the Mobilität in Deutschland survey (MiD, German for “Mobility in Germany”). We combine those two drivers with the available parking spaces and generate distributions for possible future charging points. For computational efficiency and speed, we use a raster-based approach in which all vector data is rasterized and computations are performed on the full grid of a municipality. The presented application area is Wiesbaden, Germany, and the methodology is generally applicable to municipalities in Germany.</p> <p>The method is compared and validated with alternative approaches on several levels. First, the allocation of parking space based on the raster calculation is validated against parking space numbers available in OSM. Second, the modeling of charging points supposed to compensate for the lack of home charging opportunities is contrasted with a simplified procedure by means of an analysis of multifamily housing density. In the third validation step, the method is compared to an existing machine learning model that estimates spatial suitability for charging stations. This model is trained with numerous input datasets such as population density and POIs on the one hand and utilization data of existing charging stations on the other hand. The objective of these comparisons is both to generally verify our model’s validity and to investigate the relative influence of specific components of the model.</p> <p>The identification of potential charging points in public spaces plays an important role in modeling the future energy system – especially the power grid – as the rapid adoption of electric vehicles will shift locations of demand for electricity. With our investigation, we want to present a new method to simulate future public charging point locations and show the influences of different modeling methods.</p> </div> </div>

2018 ◽  
Vol 30 (06) ◽  
pp. 1850041
Author(s):  
Thakerng Wongsirichot ◽  
Anantaporn Hanskunatai

Sleep Stage Classification (SSC) is a standard process in the Polysomnography (PSG) for studying sleep patterns and events. The SSC provides sleep stage information of a patient throughout an entire sleep test. A physician uses results from SSCs to diagnose sleep disorder symptoms. However, the SSC data processing is time-consuming and requires trained sleep technicians to complete the task. Over the years, researchers attempted to find alternative methods, which are known as Automatic Sleep Stage Classification (ASSC), to perform the task faster and more efficiently. Proposed ASSC techniques usually derived from existing statistical methods and machine learning (ML) techniques. The objective of this study is to develop a new hybrid ASSC technique, Multi-Layer Hybrid Machine Learning Model (MLHM), for classifying sleep stages. The MLHM blends two baseline ML techniques, Decision Tree (DT) and Support Vector Machine (SVM). It operates on a newly developed multi-layer architecture. The multi-layer architecture consists of three layers for classifying [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text], [Formula: see text] in different epoch lengths. Our experiment design compares MLHM and baseline ML techniques and other research works. The dataset used in this study was derived from the ISRUC-Sleep database comprising of 100 subjects. The classification performances were thoroughly reviewed using the hold-out and the 10-fold cross-validation method in both subject-specific and subject-independent classifications. The MLHM achieved a certain satisfactory classification results. It gained 0.694[Formula: see text][Formula: see text][Formula: see text]0.22 of accuracy ([Formula: see text]) in subject-specific classification and 0.942[Formula: see text][Formula: see text][Formula: see text]0.02 of accuracy ([Formula: see text]) in subject-independent classification. The pros and cons of the MLHM with the multi-layer architecture were thoroughly discussed. The effect of class imbalance was rationally discussed towards the classification results.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Author(s):  
Juan C. Olivares-Rojas ◽  
Enrique Reyes-Archundia ◽  
Noel E. Rodriiguez-Maya ◽  
Jose A. Gutierrez-Gnecchi ◽  
Ismael Molina-Moreno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document