The Luco dei Marsi deep-seated gravitational deformation: first evidence of a basal shear zone in the central Apennine mountain belt (Italy) 

Author(s):  
Emiliano Di Luzio ◽  
Marco Emanuele Discenza ◽  
Maria Luisa Putignano ◽  
Mariacarmela Minnillo ◽  
Diego Di Martire ◽  
...  

<p>The nature of the boundary between deforming rock masses and stable bedrock is a significant issue in the scientific debate on Deep-Seated Gravitational Slope Deformations (DSGSDs). In many DSGSDs the deforming masses move on a continuous sliding surface or thick basal shear zone (BSZ) [1-3]. This last feature is due to viscous and plastic deformations and was observed (or inferred) in many worldwide sites [4]. However, no clear evidence has been documented in the geological context of the Apennine belt, despite the several cases of DSGSDs documented in this region [5-6].</p><p>This work describes a peculiar case of a BSZ found in the central part of the Apennine belt and observed at the bottom of a DSGSD which affects the Meso-Cenozoic carbonate ridge overhanging the Luco dei Marsi village (Abruzzi region). The NNW-SSE oriented mountain range is a thrust-related Miocene anticline, edged on the east by an intramountain tectonic depression originated by Plio-Quaternary normal faulting. The BSZ appears on the field as a several meters-thick cataclastic breccia with fine matrix developed into Upper Cretaceous, biodetritic limestone and featuring diffuse rock damage.</p><p>The gravity-driven process was investigated through field survey, aerial photo interpretation and remote sensing (SAR interferometry) and framed into a geological model which was reconstructed also basing on geophysical evidence from the CROP 11 deep seismic profile. The effects on slope deformation determined by progressive displacements along normal faults and consequent unconfinement at the toe of the slope was analysed by a multiple-step numerical modelling constrained to physical and mechanical properties of rock mass.</p><p>The model results outline the tectonic control on DSGSD development at the anticline axial zone and confirm the gravitational origin of the rock mass damage within the BSZ. Gravity-driven deformations were coexistent with Quaternary tectonic processes and the westward (backward) migration of normal faulting from the basin margin to the inner zone of the deforming slope.</p><p><strong>References</strong></p><p>[1] Agliardi F., Crosta G.B., Zanchi A., (2001). Structural constraints on deep-seated slope deformation kinematics. Engineering Geology 59(1-2), 83-102. https://doi.org/10.1016/S0013-7952(00)00066-1.</p><p>[2] Madritsch H., Millen B.M.J., (2007). Hydrogeologic evidence for a continuous basal shear zone within a deep-seated gravitational slope deformation (Eastern Alps, Tyrol, Austria). Landslides 4(2), 149-162. https://doi.org/10.1007/s10346-006-0072-x.</p><p>[3] Zangerl C., Eberhardt E., Perzlmaier S., (2010). Kinematic behavior and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Engineering Geology 112(1-4), 53-67. https://doi.org/10.1016/j.enggeo.2010.01.001.</p><p>[4] Crosta G.B., Frattini P., Agliardi F., (2013). Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605, 13-33. https://doi.org/10.1016/j.tecto.2013.04.028.</p><p>[5] Discenza M.E., Esposito C., Martino S., Petitta M., Prestininzi A., Scarascia-Mugnozza G., (2011). The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): Geological-evolutionary model and numerical analysis. Bulletin of Engineering Geology and the Environment,70(4), 559-575. https://doi.org/10.1007/s10064-010-0342-7.</p><p>[6] Esposito C., Di Luzio E., Scarascia-Mugnozza G., Bianchi Fasani G., (2014). Mutual interactions between slope-scale gravitational processes and morpho-structural evolution of central Apennines (Italy): review of some selected case histories. Rendiconti Lincei. Scienze Fisiche e Naturali 25, 161-155. https://doi.org/10.1007/s12210-014-0348-3.</p>

2021 ◽  
Vol 21 (8) ◽  
pp. 2461-2483
Author(s):  
Christian Zangerl ◽  
Annemarie Schneeberger ◽  
Georg Steiner ◽  
Martin Mergili

Abstract. The Köfels rockslide in the Ötztal Valley (Tyrol, Austria) represents the largest known extremely rapid landslide in metamorphic rock masses in the Alps. Although many hypotheses for the trigger were discussed in the past, until now no scientifically proven trigger factor has been identified. This study provides new data about the (i) pre-failure and failure topography, (ii) failure volume and porosity of the sliding mass, and (iii) numerical models on initial deformation and failure mechanism, as well as shear strength properties of the basal shear zone obtained by back-calculations. Geographic information system (GIS) methods were used to reconstruct the slope topographies before, during and after the event. Comparing the resulting digital terrain models leads to volume estimates of the failure and deposition masses of 3100 and 4000 million m3, respectively, and a sliding mass porosity of 26 %. For the 2D numerical investigation the distinct element method was applied to study the geomechanical characteristics of the initial failure process (i.e. model runs without a basal shear zone) and to determine the shear strength properties of the reconstructed basal shear zone. Based on numerous model runs by varying the block and joint input parameters, the failure process of the rock slope could be plausibly reconstructed; however, the exact geometry of the rockslide, especially in view of thickness, could not be fully reproduced. Our results suggest that both failure of rock blocks and shearing along dipping joints moderately to the east were responsible for the formation or the rockslide. The progressive failure process may have taken place by fracturing and loosening of the rock mass, advancing from shallow to deep-seated zones, especially by the development of internal shear zones, as well as localized domains of increased block failure. The simulations further highlighted the importance of considering the dominant structural features of the rock mass. Considering back-calculations of the strength properties, i.e. the friction angle of the basal shear zone, the results indicated that under no groundwater flow conditions, an exceptionally low friction angle of 21 to 24∘ or below is required to promote failure, depending on how much internal shearing of the sliding mass is allowed. Model runs considering groundwater flow resulted in approximately 6∘ higher back-calculated critical friction angles ranging from 27 to 30∘. Such low friction angles of the basal failure zone are unexpected from a rock mechanical perspective for this strong rock, and groundwater flow, even if high water pressures are assumed, may not be able to trigger this rockslide. In addition, the rock mass properties needed to induce failure in the model runs if no basal shear zone was implemented are significantly lower than those which would be obtained by classical rock mechanical considerations. Additional conditioning and triggering factors such as the impact of earthquakes acting as precursors for progressive rock mass weakening may have been involved in causing this gigantic rockslide.


2018 ◽  
Vol 502 ◽  
pp. 231-243 ◽  
Author(s):  
Felix Gross ◽  
Joshu J. Mountjoy ◽  
Gareth J. Crutchley ◽  
Christoph Böttner ◽  
Stephanie Koch ◽  
...  

2009 ◽  
Vol 100 (1) ◽  
pp. 157-171 ◽  
Author(s):  
Stefano Gori ◽  
Biagio Giaccio ◽  
Fabrizio Galadini ◽  
Emanuela Falcucci ◽  
Paolo Messina ◽  
...  

2020 ◽  
Author(s):  
Manuel Ignacio de Paz Álvarez ◽  
Sergio Llana Fúnez ◽  
Juan Luis Alonso

<p>The Esla Nappe is located in the external foreland and thrust belt of the Variscan Orogen in the NW Iberian Massif (Cantabrian Zone, NW Iberia). It is formed by a near-complete Palaeozoic sedimentary succession. With a displacement of around 19 km, the nappe was emplaced along a thin (<2–3 m) basal shear zone (ENBSZ) located at an estimated minimum depth of 4 km. Emplacement took place during the Moscovian (ca. 312 Ma). Fault-rock assemblages record a variety of alternating deformation mechanisms and processes, including cataclastic flow,  pressure solution and hydrofracturing and vein precipitation. All these processes are considered evidence of an aseismic stable behaviour of the ENBSZ, where deformation was influenced by secular variations in the fluid pore pressure.</p><p>Following emplacement, the ENBSZ was breached by clastic dykes and sills which were intruded following re-opened previous anisotropies, including bedding planes, thrust surfaces, joints and stylolites. Together, they constitute an interconnected network of quartz sand-rich lithosomes reaching structural heights occasionally exceeding 20 m above the ENBSZ. The orientation of the dykes suggests that the injection process took place under low differential stress conditions in the hangingwall, and near-lithostatic fluid pore overpressure conditions in the footwall. The injected slurry consisted of overpressured pore fluid, quartz-sand grains derived from the footwall and entrained host-derived fragments. Depending on fracture aperture and slurry composition, a variety of fluid velocities can be inferred in the order of 15–30 cm/s. Thin pure injections of quartz grains (ca. <1 cm) were characterised by a laminar flow (Re<2100), whereas the thickest quartz and host-derived mixed injections (~1 m) displayed a fully turbulent flow (Re~2 x 10<sup>4</sup>).</p><p>The causes for the fluids to reach near-lithostatic fluid overpressures within the uppermost footwall remain unknown. It is not possible to rule out a seismic trigger, but the absence of extreme shear localization structures typical of seismic slip suggests that the injection process was driven by fluid progressive accumulation, possibly related with clay dehydration reactions, tectonic loading, pore compaction or fluid migration from underlying formations. Actual breaching and injection may have been allowed by a decrease in bedding-parallel compressive stresses in the Esla Nappe associated with the subsequent evolution of the thrust-wedge.</p>


Sign in / Sign up

Export Citation Format

Share Document