Recent FerryBox observations reveal a strong increase in surface seawater pCO2 in the North Sea

Author(s):  
Vlad Macovei ◽  
Yoana Voynova ◽  
Holger Brix ◽  
Wilhelm Petersen

<p>Surface seawater carbon dioxide partial pressure (pCO<sub>2</sub>) in the North Sea, a large temperate shelf sea, was measured between 2014 and 2018 using FerryBox-integrated membrane sensors on ships of opportunity. The use of commercial vessels ensured a high spatio-temporal resolution, with data available year-round in areas belonging to all the stratification regime types found in the North Sea. Average annual cycles revealed a dominant biological control on pCO<sub>2</sub> variability, with thermal effects modulating its amplitude. In the regions of freshwater influence, the biogeochemical characteristics of the riverine end-member also influenced the pCO<sub>2</sub> measured near shore. Deseasonalized winter trends of seawater pCO<sub>2</sub> were positive (ranging from 4.4 ± 2.0 µatm yr<sup>-1</sup> to 8.4 ± 2.9 µatm yr<sup>-1</sup> depending on the region), while the trends calculated including all deseasonalized monthly averages were even higher (ranging from 9.7 ± 2.8 µatm yr<sup>-1</sup> to 12.2 ± 1.4 µatm yr<sup>-1</sup>). All these trends were stronger than the atmospheric pCO<sub>2</sub> trend. Consequently, during our study period, the southern North Sea became a stronger source and the northern North Sea became a weaker sink for atmospheric carbon with implications for the Northwestern European Shelf carbon uptake capacity.</p>

2020 ◽  
Author(s):  
Jan Niklas Macher ◽  
Berry B. van der Hoorn ◽  
Katja T. C. A. Peijnenburg ◽  
Lodewijk van Walraven ◽  
Willem Renema

AbstractZooplankton are key players in marine ecosystems, linking primary production to higher trophic levels. The high abundance and high taxonomic diversity renders zooplankton ideal for biodiversity monitoring. However, taxonomic identification of the zooplankton assemblage is challenging due to its high diversity, subtle morphological differences and the presence of many meroplanktonic species, especially in coastal seas. Molecular techniques such as metabarcoding can help with rapid processing and identification of taxa in complex samples, and are therefore promising tools for identifying zooplankton communities. In this study, we applied metabarcoding of the mitochondrial cytochrome c oxidase I gene to zooplankton samples collected along a latitudinal transect in the North Sea, a shelf sea of the Atlantic Ocean. Northern regions of the North Sea are influenced by inflow of oceanic Atlantic waters, whereas the southern parts are characterised by more coastal waters. Our metabarcoding results indicated strong differences in zooplankton community composition between northern and southern areas of the North Sea, particularly in the classes Copepoda, Actinopterygii (ray-finned fishes) and Polychaeta. We compared these results to the known distributions of species reported in previous studies, and by comparing the abundance of copepods to data obtained from the Continuous Plankton Recorder (CPR). We found that our metabarcoding results are mostly congruent with the reported distribution and abundance patterns of zooplankton species in the North Sea. Our results highlight the power of metabarcoding to rapidly assess complex zooplankton samples, and we suggest that the technique could be used in future monitoring campaigns and biodiversity assessments.HighlightsZooplankton communities are different in northern and southern areas of the North SeaMetabarcoding results are consistent with known species distributions and abundanceMetabarcoding allows for fast identification of meroplanktonic species


2016 ◽  
Author(s):  
Lucas Merckelbach

Abstract. Ocean gliders have become ubiquitous observation platforms in the ocean in recent years. They are also increasingly used in coastal environments. The coastal observatory system COSYNA has pioneered the use of gliders in the North Sea, a shallow tidally energetic shelf sea. For operational reasons, the gliders operated in the North Sea are programmed to resurface every 3–5 hours. The glider's deadreckoning algorithm yields depth averaged currents, averaged in time over each subsurface interval. Under operational conditions these averaged currents are a poor approximation of the instantaneous tidal current. In this work an algorithm is developed that estimates the instantaneous current (tidal and residual) from glider observations only. The algorithm uses a second-order Butterworth low-pass filter to estimate the residual current component, and a Kalman filter based on the linear shallow water equations for the tidal component. A comparison of data from a glider experiment with current data from an ADCP deployed nearby shows that the standard deviations for the east and north current components are better than 7 cm s−1 in near-real time mode, and improve to better than 5 cm s−1 in delayed mode, where the filters can be run forward and backward. In the near-real time mode the algorithm provides estimates of the currents that the glider is expected to encounter during its next few dives. Combined with a behavioural and dynamic model of the glider, this yields predicted trajectories, the information of which is incorporated in warning messages issued to ships by the (German) authorities. In delayed mode the algorithm produces useful estimates of the depth averaged currents, which can be used in (process-based) analyses in case no other source of measured current information is available.


2016 ◽  
Vol 13 (24) ◽  
pp. 6637-6649 ◽  
Author(s):  
Lucas Merckelbach

Abstract. Ocean gliders have become ubiquitous observation platforms in the ocean in recent years. They are also increasingly used in coastal environments. The coastal observatory system COSYNA has pioneered the use of gliders in the North Sea, a shallow tidally energetic shelf sea. For operational reasons, the gliders operated in the North Sea are programmed to resurface every 3–5 h. The glider's dead-reckoning algorithm yields depth-averaged currents, averaged in time over each subsurface interval. Under operational conditions these averaged currents are a poor approximation of the instantaneous tidal current. In this work an algorithm is developed that estimates the instantaneous current (tidal and residual) from glider observations only. The algorithm uses a first-order Butterworth low pass filter to estimate the residual current component, and a Kalman filter based on the linear shallow water equations for the tidal component. A comparison of data from a glider experiment with current data from an acoustic Doppler current profilers deployed nearby shows that the standard deviations for the east and north current components are better than 7 cm s−1 in near-real-time mode and improve to better than 6 cm s−1 in delayed mode, where the filters can be run forward and backward. In the near-real-time mode the algorithm provides estimates of the currents that the glider is expected to encounter during its next few dives. Combined with a behavioural and dynamic model of the glider, this yields predicted trajectories, the information of which is incorporated in warning messages issued to ships by the (German) authorities. In delayed mode the algorithm produces useful estimates of the depth-averaged currents, which can be used in (process-based) analyses in case no other source of measured current information is available.


2013 ◽  
Vol 113 (1-3) ◽  
pp. 153-166 ◽  
Author(s):  
Liam Fernand ◽  
Keith Weston ◽  
Tom Morris ◽  
Naomi Greenwood ◽  
Juan Brown ◽  
...  

In the North Sea advective transports are not negligible. Nevertheless, physical properties like sea surface temperature (SST) can be hindcasted with sufficient precision by vertical process water column models. Annual cycles of SST in the southern, central, and northern North Sea can be simulated using physical upper layer models with relatively small RMS errors. For the Fladenground Experiment (FLEX’76) in the northern North Sea the RMS error is less 0.3 °C for the 2 months of the experiment. This justifies the initial use, at least, of vertical process water column models in simulations for investigating transfer processes in the planktonic ecosystem. Experiments have shown that the simulated entrainment velocities at the bottom of the mixed layer during summer are critically dependent on the resolution of the forcing variables. The effects of this resolution on the annual phytoplankton dynamics will be discussed. Phytoplankton dynamics are strongly influenced by those of the zooplankton, and vice versa. Several field investigations have shown that, seemingly, phytoplankton cannot sustain the observed stock of zooplankton in the northern North Sea: there exists a gap between the abundance of phytoplankton and the need for it to maintain the zooplankton. Revisiting FLEX’76, the simulations with water column models of increasing complexity concerning detritus suggest that pelagic detritus can fill the gap in food availability for the zooplankton. If it is assumed that the zooplankton feeds also on detritus, the zooplankton experiences no food shortage.


2004 ◽  
Vol 83 (3) ◽  
pp. 173-178 ◽  
Author(s):  
Y. Van Eetvelde ◽  
C. Dupuis ◽  
C. Cornet

AbstractAssemblages of brackish and marine diatoms have been examined from Upper Paleocene-Lower Eocene strata of the Belgian Basin (Knokke well) and the Dieppe-Hampshire Basin (Saint-Josse borehole and Ailly sections). The diatoms observed are invariably preserved in pyrite as internal moulds and their siliceous skeletons are completely replaced by pyrite by epigenesis. Three major diatom assemblages have been observed which can be used to approximate the position of the recently defined Paleocene-Eocene boundary (defined by the Carbon Isotope Excursion). This isotope excursion occurs just below the strong increase in the abundance of Fenestrella antiqua and in the vicinity of the abundance peak of Coscinodiscus morsianus var. moelleri. They also allow correlations of the lithostratigraphic units of the Belgian Basin with the formations of the Dieppe-Hampshire and central North Sea Basins. For instance, investigations of diatoms recorded in the Knokke Clay Member of the Knokke well indicate that this unit corresponds to the lower units of the ‘Sparnacian facies’ of the Dieppe-Hampshire Basin and to the Sele Formation of the North Sea Basin.


2020 ◽  
Author(s):  
Charlotte Williams ◽  
Claire Mahaffey ◽  
Matthew Palmer ◽  
Naomi Greenwood

<p>The global ocean dissolved oxygen (DO) inventory is decreasing and the areal extent of DO deficiency is increasing. In the shelf sea BML, net DO removal can occur as a result of restricted ventilation due to seasonal thermal stratification, oxygen consumption via pelagic and benthic respiration of organic matter, and nitrification. DO decline is becoming evident in several shelf seas, with recent model studies estimating that large regions of the Northwest European continental shelf seas (325,000 to 400,000 km<sup>2</sup>) have the potential to become seasonally deficient in DO in late summer. It is therefore of vital importance that DO is monitored accurately and effectively in shelf seas.</p><p>Here we present results from AlterECO project, which aimed to provide an alternative, novel framework for the monitoring of shelf sea ecosystem health indicators, including DO, via the deployment of 20 gliders in the North Sea (NW European shelf). Between November 2017 and May 2019 the gliders provided 18 month continuous measurements of T, S, chlorophyll fluorescence, and DO in the seasonally stratified study area, capturing the onset and breakdown of two spring blooms. In both years the gliders captured a weakly stratified, deep (>60m) thermocline in late autumn which was responsible for oxygen deplete (75%)  ‘pools’ in the North Sea. Our results show that preconditioning of pre-bloom transitional periods as well as episodic mixing events drive inter-annual differences in BML DO concentrations. Large inter-annual variability between pre-bloom physical conditions was observed, with the occurrence of anticyclone Hartmut in February 2018 resulting in a much colder water column (and therefore higher solubility of DO) in spring 2018 than 2019. Additionally we will demonstrate that the erosion of mini-blooms during the onset of stratification results in mixing of supersaturated DO surface water into the BML, helping to prevent DO deficiency in the BML in late summer. Comparisons of our high resolution glider data with the latest state of the art biogeochemical models (AMM15-ERSEM) will also be presented. We postulate that understanding the drivers of inter-annual variability in pre-bloom physical conditions is crucial in terms of understanding and predicting DO depletion in shelf seas.</p><p> </p>


2004 ◽  
Vol 61 (4) ◽  
pp. 709-720 ◽  
Author(s):  
Claudia Halsband-Lenk ◽  
François Carlotti ◽  
Wulf Greve

Abstract To evaluate the relationship between different environmental temperature regimes and life-history traits of key planktonic taxa, the life cycles of congener pairs of Temora and Centropages species at two sites, a cold-temperate shelf sea (Helgoland Island, North Sea) and a warm-temperate oceanic site (Bay of Villefranche, Mediterranean) were compared in a multi-annual time-series. In an attempt to assemble a variety of parameters – some detailed, others sporadically measured – a synthesis of the life cycle is presented for each population. Although closely related, congeners showed distinct temperature preferences and specific adaptations of their life cycles to temperature regime. On the other hand, co-existing species such as T. longicornis and C. hamatus in the North Sea showed some analogous life-history traits. C. typicus occupied an intermediate position and was able to tolerate both temperature regimes by shifting its reproductive period between seasons. We point out interannual and inter-site variability in the populations investigated and identify the unsolved questions in regard to the seasonal dynamics of these species that require verification.


Twenty years since the discovery of tidal mixing fronts there are still few convincing observations of the velocity field associated with these structures. Simple models of shelf sea fronts predict strong along-front jets, weaker convergent circulations and instabilities. During the North Sea Project a series of studies of the Flamborough frontal system has used a new approach based upon novel combinations of modern instrumentation (HF radar, acoustic Doppler current profiler, Decca-Argos drifting buoys and towed undulating CTD) and have provided one of the first directly observed pictures of shelf sea frontal circulation. Observational confirmation of jetlike along-front flow has been found together with evidence of cross-frontal convergence. A new generation of eddy-resolving models will help to focus the next phase of frontal circulation studies in relation to questions concerning baroclinic instability and eddy generation.


Sign in / Sign up

Export Citation Format

Share Document