Present and future water security under socioeconomic and climate changes in the Vilcanota-Urubamba basin

Author(s):  
Andres Goyburo ◽  
Pedro Rau ◽  
Waldo Lavado ◽  
Fabian Drenkhan ◽  
Wouter Buytaert

<p>This research assesses present (2009-2016) and future (until 2100) levels of water security taking into consideration socioeconomic and climate change scenarios using the WEAP (Water Evaluation and Planning) tool for semidistributed hydrological modeling. The study area covers the  Vilcanota-Urubamba basin in the southern Peruvian Andes and presents a complex water demand context as a glacier-fed system.</p><p>Current total water demand is estimated in 5.12E+9 m3/year and includes agriculture (6674.17 m3/year), domestic (7.79E+07m3/year), industrial (1.01E+06 m3/year) and energy (5.03e+9 m3/year) consumption. For assessing the current water supply, observed flow data is used to simulate and validate the model (also accounting for glacier melt contribution). The analysis of unmet water demand for the period 2016–2100 was computed using the soil moisture scheme of the WEAP model, which simulates the hydrological cycle and generates future scenarios for water demand. Different scenarios were generated for external driving factors (population growth and increasing agriculture area) and the impact of climate change to evaluate their effect on the current water supply system. </p><p>These results will allow for the first time to evaluate the impact of changes in glacier melt contributions on water security taking into account also changes in water demand.</p><p>This study also further explores the importance of incorporating science and policy within a broader study of water security. As a result, it is expected to deliver high spatial resolution water demand maps and adaptation strategies for stakeholders. This research is part of the RAHU project as a new multidisciplinary collaboration between UK and Peruvian scientists.</p>

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1751 ◽  
Author(s):  
Houssam Ayt Ougougdal ◽  
Mohamed Yacoubi Khebiza ◽  
Mohammed Messouli ◽  
Asia Lachir

Climate change will affect the water resources system, on global and regional levels. Over the past thirty years, the High Atlas Mountains in Morocco have experienced severe droughts, which causes a decrease in water supply that affects both agriculture and the urban water system. In this paper, we assess the impact of climate change and socio-economic activities on water supply and demand in the Ourika watershed (High Atlas of Morocco), then we evaluate the efficiency and sustainability of regional adaptation strategies for water supply management. For this, we simulate and analyze the future water situation using the statistical downscaling model (SDSM) and the water assessment and planning tool (WEAP). After the model’s calibration and validation, the precipitation, minimum (Tmin) and maximum (Tmax) temperatures, water demand and unmet water demand were projected for 2100 horizon, using different climate change scenarios. The results revealed that the model’s performance, calibration and validation were found to be satisfactory. The analysis shows that the mean precipitation will decrease by 49.25% and 34.61% by 2100, under A2 and B2 emission scenarios of the Intergovernmental Panel on Climate Change (IPCC). The projected mean Tmax and Tmin will be warmer than the baseline period, with Tmax increasing by 4.2 °C (A2) and 3.6 °C (B2), and Tmin by 3.5 °C (A2) and 2.9 °C (B2) by 2100. The results also show that water demand and the unmet water demand will increase in all scenarios, the pressure on water resources will increase, leading to water scarcity. The results reveal that, under the influence of climate change, future unmet water demand is expected to reach 64 million cubic meters (MCM) by 2100. The results demonstrate that the assessments of the proposed adaptation strategies are effective, but not sufficient to ensure water sustainability for the Ourika watershed.


2021 ◽  
Author(s):  
Richard Dallison ◽  
Sopan Patil

<p>The impact of climate change on the hydrological cycle and catchment processes has been extensively studied. In Wales, such changes are projected to have a substantial impact on hydrological regimes. However, the impact on the water abstraction capability of key sectors in the country, such as hydropower (HP) and public water supply (PWS), is not yet fully understood. We use the Soil and Water Assessment Tool (SWAT) to generate future (2021-2054) daily streamflows under a worst-case scenario of greenhouse gas emissions (Representative Concentration Pathway 8.5) at two large catchments in Wales, the Conwy and Tywi. SWAT streamflow output is used to estimate the abstractable water resources, and therefore changes in the average generation characteristics for 25 run-of-river HP schemes across Conwy and Tywi and the total unmet demand for a single large PWS abstraction in the Tywi. This unmet PWS demand is assessed using the Water Evaluation And Planning (WEAP) system under increasing, static, and declining demand scenarios. Mann-Kendall trend analysis is performed to detect and characterise the trends for both sectors.</p><p>Results show greater seasonality in abstraction potential through the study period, with an overall decrease in annual abstraction volume due to summer and autumn streamflow declines outweighing increases seen in winter and spring. For HP, these trends result in a projected decline in annual power generation potential, despite an increasing number of days per year that maximum permitted abstraction is reached. For PWS, under all future demand scenarios, annually there is an increase in the number of days where demand is not met as well as the total shortfall volume of water. Our results suggest that currently installed HP schemes may not make optimal use of future flows, and that the planning of future schemes should take account of these to ensure the most efficient operation is achieved. Moreover, PWS supply sustainability is under threat and will require management and mitigation measures to be implemented to ensure future supplies. Overall, our study provides a novel perspective on the future water resource availability in Wales, giving context to management planning to ensure future HP generation efficiency and PWS sustainability.</p>


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1201 ◽  
Author(s):  
Pantelis Sidiropoulos ◽  
Georgios Tziatzios ◽  
Lampros Vasiliades ◽  
Nikitas Mylopoulos ◽  
Athanasios Loukas

Groundwater quantity and quality degradation by agricultural practices is recorded as one of the most critical issues worldwide. This is explained by the fact that groundwater is an important component of the hydrological cycle, since it is a source of natural enrichment for rivers, lakes, and wetlands and constitutes the main source of potable water. The need of aquifers simulation, taking into account water resources components at watershed level, is imperative for the choice of appropriate restoration management practices. An integrated water resources modeling approach, using hydrological modeling tools, is presented for assessing the nitrate fate and transport on an over-exploited aquifer with intensive and extensive agricultural activity under various operational strategies and future climate change scenarios. The results indicate that climate change affects nitrates concentration in groundwater, which is likely to be increased due to the depletion of the groundwater table and the decrease of groundwater enrichment in the future water balance. Application of operational agricultural management practices with the construction and use of water storage infrastructure tend to compensate the groundwater resources degradation due to climate change impacts.


2009 ◽  
Vol 59 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Á. Kovács ◽  
A. Clement

The paper outlines a multi-component assessment of the impacts of the climate change on runoff and total phosphorus loads to the large shallow Lake Balaton in Hungary. Present hydrological cycle of the lake catchment has been examined using the rainfall-runoff model WetSpa. Particular phosphorus concentration in runoff was estimated on the basis of the simulated streamflow using an empirical power equation. Dissolved phosphorus concentrations were determined as a function of landuse and soil type of the corresponding sub-catchment. The model was calibrated and validated against daily observations manually at monitoring sites of sixteen inflowing streams around the lake. Runoff stemming from shoreline urban developments was calculated by the urban runoff simulation model SWMM. Phosphorus concentrations in urban runoff were calculated by an empirical relationship derived from field measurements. The model was henceforward run for climate change scenario analysis. Present weather data were modified by the climate change scenarios imported from the results of the CLIME project. The results indicate that the impact of the climate change on runoff and phosphorus load appears in the change of the distribution within a time period rather than in the total volume. However, due to the high uncertainties in climate models, the presented calculations are possible assumptions rather than established statements.


2021 ◽  
Vol 29 ◽  
pp. 107-121
Author(s):  
Priscila Esposte Coutinho ◽  
Marcio Cataldi

In the last century, changes in climate trends have been observed around the planet, which have resulted in alterations in the hydrological cycle. Studies that take into account the impact of climate change on water availability are of great importance, especially in Brazil’s case, where water from rivers, beyond being destined for human consumption, animal watering and economic activities, has a great participation in electricity generation. This fact makes its energy matrix vulnerable to variations in the climate system. In this study, a flow analysis for the head of the São Francisco river basin was performed between 2010 and 2100, considering the precipitation data of the CCSM4 climate model presented in the Fifth Assessment Report (AR5) from the Intergovernmental Panel on Climate Change (IPCC). Projections of future flow were performed for the scenarios RCP4.5 and RCP8.5, based on the SMAP rain-flow model, followed by a comparative analysis with the present climate. In general, we can observe that the decades of 2010 to 2100 will be marked by the high levels of precipitation, interspersed by long droughts, in which the recorded flow will be lower than the Long Term Average (LTA) calculated for the basin. Therefore, new management strategies must be considered to maintain the multiple uses of the basin.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 101-108 ◽  
Author(s):  
S. Maheepala ◽  
C. Perera

This paper describes a probability-based method for assessing the potential impact of climate change on urban water supply systems. Specifically, the assessment method uses probability distributions to place a confidence level on the plausible values of response variables. The Benalla water supply system has been used to demonstrate applicability of the proposed assessment method. For the application, the impact of the 2030 climate change scenarios on streamflows and system yield has been examined. The preliminary results have demonstrated that the proposed assessment method can provide valuable insights into the impact of climate change on water supply systems, allowing it to be incorporated into planning decisions.


Author(s):  
Darwin Mena Rentería ◽  
Eydy Michell Espinosa ◽  
Paula Carolina Soler ◽  
Miguel Cañón Ramos ◽  
Freddy Santiago Duarte ◽  
...  

This project assesses the risk of water supply failure for the agricultural sector under climate change conditions by implementing hydrological models that support decision-making for satisfying consumptive demands in times of scarcity. This project was developed using hydrological modeling tools such as the HydroBID software and the SIMGES and SIMRISK water resource management models of AQUATOOL DSS. The flow series for a current scenario were obtained for different climate change scenarios from a Global Climate Model (GCM) and the Coordinated Regional Experiment on Climate Reduction (CORDEX) by downscaling the results from the global scale to basin-scale using a statistical method based on chaos theory. These projections show that under conditions of climate change, the agricultural sector of the Balsillas basin will not suffer significant impacts since they will be able to satisfy most demand points.


2021 ◽  
Author(s):  
Tejal Shirsat ◽  
Anil Kulkarni ◽  
Andrea Momblanch ◽  
Surjeet Singh Randhawa ◽  
Ian Holman

<p>The Himalayan region has a large hydropower potential due to the natural topographic gradient and abundance of water resource from rainfall, snow and glacier melt. However, future water availability in the Himalayan streams is likely to be altered due to climatic conditions, which necessitates an assessment of hydropower investments, especially for small run-of-the-river projects. Here, we study the future glacio-hydrological changes in a small catchment located in the Upper Beas basin, in Western Himalaya in India, and their impacts on the operation of two small hydropower projects with contrasting hydrological requirements. The Water Evaluation and Planning (WEAP) model is used to integrate and analyse changes in cryosphere, hydrology and hydropower production in the middle and end of the 21st century using multiple climate models representing different types of future scenarios under RCP 4.5 and 8.5. In response to projected climate, the snow and glacier melt contribution to annual discharge declines from 34% in the baseline to 16.5% (RCP4.5) and 13.8% (RCP8.5) by the end of the century. The total streamflow shows broad uncertainty in magnitude and direction of change but shows a noticeable seasonal shift in the hydrological cycle. Of the two hydropower projects, the plant that utilizes high flows with low hydraulic head shows a behaviour similar to streamflow projections resulting in 13% (RCP45) and 19.7% (RCP85) increase in annual power generation by the end of the century arising from the increased hydropower potential of low flows and the rise in precipitation. The second power project that relies on lesser flows with high head maintains its designed power production consistently throughout the century in all the climate change scenarios. The differing sensitivity of the power projects to climate change is influenced by future changes in the runoff as well as by their design. Thus, this study provides insights into the climate-adaptive development and planning of small hydropower projects in the Himalayan region.</p>


Sign in / Sign up

Export Citation Format

Share Document