Mapping debris-flow channels in the southern Central Andes using high-resolution topographic data 

Author(s):  
Ariane Mueting ◽  
Bodo Bookhagen ◽  
Manfred R. Strecker

<p>Resolving Earth’s surface at the meter scale is essential for an improved understanding of topographic signatures generated by debris-flow activity in high-relief mountainous terrains. Here, we explore the applicability and potential of digital elevation models (DEMs) derived from stereo-photogrammetry for debris-flow detection in the southern Central Andes of NW Argentina. Our analysis relies on a high-resolution (3 m) DEM created from SPOT-7 tri-stereo satellite data. We carefully validated DEM quality with ~5000 differential GPS points for an area of 245 km² in the Quebrada del Toro basin within the Eastern Cordillera.<span> </span></p><p>We build upon previous work that suggests that debris flows have a distinct signature in the drainage area and slope framework: debris-flow channels exhibit a nearly constant slope (no channel curvature), while channels dominated by fluvial transport processes show a negative power-law behavior in log-log space. Drainage-area approaches in geomorphic analysis are fast and efficient tools to distinguish signatures of debris-flow and fluvial transport processes, yet they might introduce an averaging bias because upstream areas are analyzed jointly.<span> </span></p><p>For a more precise localization and assessment of debris-flow activity, we evaluate topographic signatures of individual channels. We present a new approach that relies on connected components of similar slope that can be attributed to different transport regimes. Debris-flow activity reflects particularly steep segments of medium connected-component lengths in small drainage areas. The spatial occurrence and lengths of these segments are controlled by geologic and lithologic boundary conditions and we find that the highest debris-flow activity corresponds with steep slopes in areas documented Quaternary tectonic activity and the exposure of pervasively fractured bedrock. Comparing our results to topographic signatures of the corresponding catchments in log-log space, we show that individual channel approaches allow to better detect intra-catchment variability. These are imperative for understanding erosion and sediment-transport processes in the river channel. Since high-resolution data are needed to reliably resolve debris-flow channels, our meter-scale DEMs greatly improve the localization and prediction of debris-flow activity. Thus, for evaluations of recurring hazardous debris-flow activity in extensive, remote, and sparsely vegetated mountainous landscapes, stereo-photogrammetry presents a very suitable and cost-efficient alternative to airborne lidar data.<span> </span></p>

2020 ◽  
Author(s):  
Ariane Mueting ◽  
Bodo Bookhagen ◽  
Manfred R. Strecker

<p>Mountainous high-relief terrains in climatically sensitive regions are often subjected to natural extreme events such as debris flows and landsliding. With people and infrastructure at risk, it is important to identify, measure, and comprehend the driving forces and mechanisms of slope movements in these environments at regional scale. Geomorphologic analyses and hazard assessments in these regions are, however, often limited by the availability of good-quality high-resolution digital elevation models (DEMs). Publically available data often have lower spatial resolution and are distorted in high-relief areas. In contrast, airplane-based lidar (light detection and ranging) data provide highly accurate information on 3D structure, yet, acquisition is costly and limits the size of the respective study area. Finding adequate, economical alternatives for creating high-resolution DEMs is therefore essential to study Earth-surface processes at regional scale, which may enable the detection of spatial variations, clusters and trends.</p><p>In areas with sparse vegetation, stereogrammetry has proven to be a viable tool for creating high-resolution DEMs. Here, we use SPOT-7 tri-stereo satellite imagery to create DEMs at 3 m spatial resolution for the Quebrada del Toro (QdT) in the Eastern Cordillera of NW Argentine Andes, an area with extreme gradients in topography, rainfall and erosion. Over 5000 GPS points collected during fieldwork ensure the spatial coherence of our DEMs.</p><p>Field observations in this high-elevation area show that the hillslopes of the deeply incised QdT gorge are characterized by debris flow deposits of various extent. Debris flows have a specific slope-drainage area relationship that curves in log-log space. Using high-resolution topographic data, we are able to provide further evidence for this phenomenon and characterize the distinct topographic signature of debris flows. We specifically focus on the transition zone between debris-flow and fluvial processes, which is variable in the different catchments. The transition is characterized by a pronounced kink revealed in slope-drainage plots, as well as an increase of slope scatter in the drainage area logbins. We propose that the presence and location of this kink reflects the nature of the dominating transport processes in the corresponding catchments. In light of these observations we discriminate between debris-flow and fluvially dominated catchments in the QdT and identify regions that primarily exhibit slope movement. Our new results reveal a cluster of fluvial catchments to the SE of our study area – an area that receives significantly more moisture than upstream regions. In contrast, debris flows are prominent in areas of sparse vegetation, where occasional extreme rainfall events are efficient in transporting large amounts of talus downhill. These observations are key to a better understanding of the relationships between the impact of extreme rainfalls at high elevation and the formation of large volumes of sediment in the arid highlands of the Andes.</p>


2016 ◽  
Author(s):  
Julie C. Fosdick ◽  
◽  
Barbara Carrapa ◽  
Barbara Carrapa ◽  
Ellen J. Reat ◽  
...  

2017 ◽  
Author(s):  
José Luis Antinao ◽  
◽  
Rachel Tiner ◽  
Rachel Tiner ◽  
Rachel Tiner ◽  
...  

2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Estelle Arbellay ◽  
Markus Stoffel ◽  
Michelle Bollschweiler
Keyword(s):  

2001 ◽  
Vol 171 (3-4) ◽  
pp. 213-237 ◽  
Author(s):  
Wolfgang Siebel ◽  
Wolfgang B.W. Schnurr ◽  
Knut Hahne ◽  
Bernhard Kraemer ◽  
Robert B. Trumbull ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 41-46 ◽  
Author(s):  
R. Zech ◽  
J. Zech ◽  
Ch. Kull ◽  
P. W. Kubik ◽  
H. Veit

Abstract. The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.


2011 ◽  
Vol 11 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
J. Lopez Saez ◽  
C. Corona ◽  
M. Stoffel ◽  
A. Gotteland ◽  
F. Berger ◽  
...  

Abstract. Hydrogeomorphic processes are a major threat in many parts of the Alps, where they periodically damage infrastructure, disrupt transportation corridors or even cause loss of life. Nonetheless, past torrential activity and the analysis of areas affected during particular events remain often imprecise. It was therefore the purpose of this study to reconstruct spatio-temporal patterns of past debris-flow activity in abandoned channels on the forested cone of the Manival torrent (Massif de la Chartreuse, French Prealps). A Light Detecting and Ranging (LiDAR) generated Digital Elevation Model (DEM) was used to identify five abandoned channels and related depositional forms (lobes, lateral levees) in the proximal alluvial fan of the torrent. A total of 156 Scots pine trees (Pinus sylvestris L.) with clear signs of debris flow events was analyzed and growth disturbances (GD) assessed, such as callus tissue, the onset of compression wood or abrupt growth suppression. In total, 375 GD were identified in the tree-ring samples, pointing to 13 debris-flow events for the period 1931–2008. While debris flows appear to be very common at Manival, they have only rarely propagated outside the main channel over the past 80 years. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of four patterns of debris-flow routing and led to the determination of three preferential breakout locations. Finally, the results of this study demonstrate that the temporal distribution of debris flows did not exhibit significant variations since the beginning of the 20th century.


Sign in / Sign up

Export Citation Format

Share Document