abandoned channels
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jeongyeon Han ◽  
Wonsuck Kim

Abstract. A natural levee is a typical wedge-shaped deposit adjacent to a river channel. Given its location and distinctive features, the levee can serve as a key to revealing depositional processes of the coupled channel to floodplain system preserved in the rock record. Levee-floodplain topographic evolution is also closely linked to river avulsion processes which can spell a catastrophic flood. Nonetheless, the levee geometry and its aggradation pattern on the floodplain have not been fully incorporated in the study of avulsion. Here, we present a levee-building model using an advection settling of suspended sediment to reproduce the evolution of a fluvial levee over floods and to examine the effects of boundary conditions on levee geometry and grain-size trend. We further investigate river avulsion frequencies and styles (i.e., local vs. regional avulsion) associated with the grain-size distribution of supplied sediment and the overflow velocity into the floodplain, which control the levee geometry and especially the aggradation rate at the levee crest. In the modelling results, the levee develops 1) a concave-up profile, 2) exponentially decreasing grain size in the deposit, and 3) a relatively steeper shape for coarser sediment supply. The subsequent scaling analysis supports that the input grain size and levee profile slope are positively correlated with the avulsion frequency, whereas the overflow velocity is inversely proportional to the avulsion frequency. In connection with the avulsion styles and levee geometry, we suggest that steeper levee slopes tend to promote more local avulsions protecting abandoned channels from topographic healing, but gentler slopes of the levee are likely to lead to regional avulsions as abandoned channels with gentler levees are more vulnerable to the removal of topographic memory. The insights drawn from the current modelling work may thus have potential implications for reconstructing paleoenvironments in regard to river sediment transport and flood processes via levee deposits. Based on the roles of a levee on the avulsion frequency and style, the flood hazards triggered by river avulsions as well as the alluvial architecture in sedimentary records can be better assessed.


2021 ◽  
Author(s):  
Harrison K. Martin ◽  
Douglas A. Edmonds

Abstract. River avulsions are an important mechanism by which sediment is routed and emplaced in foreland basins. However, because avulsions occur infrequently, we lack observational data that might inform where, when, and why avulsions occur and these questions are instead often investigated by rule-based numerical models. These models have historically simplified or neglected the effects of abandoned channels on avulsion dynamics, even though fluvial megafans in foreland basins are characteristically covered in abandoned channels. Here, we investigate the pervasiveness of abandoned channels on modern fluvial megafan surfaces. Then, we present a physically based cellular model that parameterizes interactions between a single avulsing river and abandoned channels in a foreland basin setting. We investigate how abandoned channels affect avulsion set-up, pathfinding, and landscape evolution. We demonstrate and discuss how the processes of abandoned channel inheritance and transient knickpoint propagation post-avulsion serve to shortcut the time necessary to set-up successive avulsions. Then, we address the idea that abandoned channels can both repel and attract future pathfinding flows under different conditions. By measuring the distance between the mountain-front and each avulsion over long (106 to 107 years) timescales, we show that increasing abandoned channel repulsion serves to push avulsions farther from the mountain-front, while increasing attraction pulls avulsions proximally. Abandoned channels do not persist forever, and we test possible channel healing scenarios (deposition-only, erosion-only, and far-field directed) and show that only the final scenario achieves dynamic equilibrium without completely filling accommodation space. We also observe megafan growth occurring via ~O:105 year lobe switching, but only in our runs that employ deposition-only or erosion-only healing modes. Finally, we highlight opportunities for future field work and remote sensing efforts to inform our understanding of the role that floodplain topography, including abandoned channels, plays on avulsion dynamics.


Geology ◽  
2020 ◽  
Vol 48 (9) ◽  
pp. 903-907
Author(s):  
Hiranya Sahoo ◽  
M. Royhan Gani ◽  
Nahid D. Gani ◽  
Gary J. Hampson ◽  
John A. Howell ◽  
...  

Abstract Despite the importance of channel avulsion in constructing fluvial stratigraphy, it is unclear how contrasting avulsion processes are reflected in stratigraphic-stacking patterns of channelized fluvial sand bodies, as a proxy for how river depocenters shifted in time and space. Using an integrated, geospatially referenced, three-dimensional data set that includes outcrop, core, and lidar data, we identify, for the first time in an outcrop study, a predictive relationship between channelized sand body architecture, paleochannel mobility, and stratigraphic-stacking pattern. Single-story sand bodies tend to occur in vertically stacked clusters that are capped by a multilateral sand body, indicating an upward change from a fixed-channel system to a mobile-channel system in each cluster. Vertical sand body stacking in the clusters implies reoccupation of abandoned channels after “local” avulsion. Reoccupational avulsion may reflect channel confinement, location downstream of a nodal avulsion point that maintained its position during development of the sand body cluster, and/or aggradation and progradation of a backwater-mediated channel downstream of a nodal avulsion point. Sand body clusters and additional multilateral sand bodies are laterally offset or isolated from each other, implying compensational stacking due to “regional” switching of a nodal avulsion point to a new, topographically lower site on the floodplain. The predictive links between avulsion mechanisms, channel mobility, and resultant sand body distributions and stacking patterns shown in our findings have important implications for exploring and interpreting spatiotemporal patterns of stratigraphic organization in alluvial basins.


2020 ◽  
Vol 8 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Léo Szewczyk ◽  
Jean-Louis Grimaud ◽  
Isabelle Cojan

Abstract. The nature of abandoned channels' sedimentary fills has a significant influence on the development and evolution of floodplains and ultimately on fluvial reservoir geometry. A control of bifurcation geometry (i.e., bifurcation angle) on channel abandonment dynamics and resulting channel fills, such as sand plugs, has been intuited many times but never quantified. In this study, we present a series of experiments focusing on bedload transport designed to test the conditions for channel abandonment by modifying the bifurcation angle between channels, the flow incidence angles and the differential channel bottom slopes. We find that disconnection is possible in the case of asymmetrical bifurcations with high diversion angle (≥30∘) and quantify for the first time an inverse relationship between diversion angle and sand plug length and volume. The resulting sand plug formation is initiated in the flow separation zone at the external bank of the mouth of the diverted channel. Sedimentation in this zone induces a feedback loop leading to sand plug growth, discharge decrease and eventually to channel disconnection. Finally, the formation processes and final complex architecture of sand plugs are described, allowing for a better understanding of their geometry. Although our setup lacks some of the complexity of natural rivers, our results seem to apply at larger scales. Taken into account, these new data will improve fluvial (reservoir) models by incorporating more realistic topography and grain size description in abandoned channels.


2020 ◽  
Vol 90 (4) ◽  
pp. 403-428
Author(s):  
Joe Scibiorski ◽  
Daniel Peyrot ◽  
Simon Lang ◽  
Tobias H.D. Payenberg ◽  
Adam Charles

ABSTRACT Palynofacies analysis was carried out on 92 core samples from the fluvio-deltaic Middle to Upper Triassic Mungaroo Formation, Northern Carnarvon Basin, Western Australia. The analyses demonstrate that each depositional environment (“depofacies”) sampled has a characteristic palynofacies assemblage reflecting the varied origins, transport, sorting, and preservation histories of organic particles in sediments. The sampling covered a wide range of depofacies identified in fluvial channel, floodplain, crevasse splay, distributary channel, and tidal zone paleoenvironments and included laminated to massive mudstones and siltstones, cross-bedded sandstones, immature pedogenically altered paleosols, and coals. Although each depofacies has a characteristic palynofacies association, there is a high degree of variability within and overlap between preparations. Black-opaque particles were the dominant component in active fluvial, crevasse, and distributary channels. In contrast, palynomorphs, brown wood particles, and cuticle were more common in abandoned channels, floodplain lakes, and other lower-energy environments. The composition of palynomorphs also varies greatly between depofacies due to factors including the bioproductivity of the surrounding vegetation source area, water-table levels, preservation potential, and the fluid dynamic properties of organic particles. The depofacies were grouped into five “process regimes” (active channels, abandoned channels, lakes and periodically flooded areas, paleosols and swamps, tidal mudflats) based on their dominant depositional process. Depofacies in the same process regime tended to have similar palynofacies associations. Active channels yielded similar assemblages irrespective of whether they were fluvial, crevasse, or distributary channels because their dominant characteristic is high flow energy, which encourages the bypass of finer-grained particles, enhances the mechanical degradation of plant debris, and may inhibit local vegetation growth. Organic particles found in lower-energy environments (e.g., floodplain lakes) are on average larger, more elongate, and better preserved than particles found in high-energy environments (e.g., active channels). Although this study was restricted to samples from the upper Samaropollenites speciosus and lower Minutosaccus crenulatus biostratigraphic zones in a geographically limited area, its results are not influenced by the specific taxonomic composition of the vegetation but by the physiographic structure of surrounding plant communities; this suggests that palynofacies analysis could be used to distinguish depositional environments in deltaic settings from other stratigraphic intervals.


2020 ◽  
Vol 94 (2) ◽  
pp. 545-555
Author(s):  
Zongbao LIU ◽  
Yunzhi SHANG ◽  
Rongsheng ZHAO ◽  
Fang LIU ◽  
Xinyu XUE ◽  
...  

2020 ◽  
Author(s):  
Léo Szewczyk ◽  
Jean-Louis Grimaud ◽  
Isabelle Cojan

Abstract. The nature of abandoned channels sedimentary fills has a significant influence on the development and evolution of floodplains and ultimately on fluvial reservoir geometry. A control of bifurcation geometry (i.e., bifurcation angle) on channel abandonment dynamics and resulting channel fills, such as sandplug, has been intuited many times but never quantified. In this study we present a series of experiments focusing on bedload transport designed to test the conditions for channel abandonment by modifying the bifurcation angle between channels, the flow incidence angles and the differential channel bottom slopes. We find that disconnection is possible in the case of asymmetrical bifurcations with high diversion angle (≥ 30°) and quantify for the first time a relationship between diversion angle and sandplug length and volume. The resulting sandplug formation is initiated in the flow separation zone at the external bank of the mouth of the diverted channel. Sedimentation in this zone initiates a feedback loop leading to sandplug growth, discharge decrease and eventually to channel disconnection. Finally, the formation processes and final complex architecture of sandplugs are described, allowing for a better understanding of their geometry. Although our setup lacks the complexity of natural rivers, our results seem to apply at larger scales. Taken into account, these new data will improve the realism of fluvial models.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 148 ◽  
Author(s):  
Paolo Magliulo ◽  
Alessio Valente

On 15 October 2015, the floodplain of the Calore River underwent a destructive flood, with a stream stage increase up to 10 m. In this paper, we describe the GIS-based, object-oriented geomorphological map of the overflooded sectors of the Calore River floodplain near Benevento. The map graphically represents the field-checked results of a detailed geomorphological study carried out by means of GIS analysis of historical and topographic maps and orthophotos. Particular attention was devoted to the analysis of the channel adjustments experienced by the Calore River since the end of the 19th century, which shaped most of the landforms in the floodplain. The results showed that the investigated floodplain is characterized by abandoned channels, anthropogenic landforms, and five orders of recent river terraces separated by gently-sloping inactive fluvial scarps, less than 2 m high. On the oldest and/or more distal sectors of the floodplain, landforms are badly preserved, probably due to the more prolonged reshaping by natural erosional processes and anthropogenic activities, and to the high erodibility of the loose sediments in which they are shaped. The proposed map could be a key tool for a correct flood hazard assessment in the Benevento area, permitting thematic maps that avoid or reduce the negative effects of events similar to the 15 October 2015 flood.


Sign in / Sign up

Export Citation Format

Share Document