scholarly journals Elastic Block Model in the North Andean Sliver

Author(s):  
Paul Jarrin ◽  
Jean-Mathieu Nocquet ◽  
Frederique Rolandone ◽  
Hector Mora-Paez ◽  
Patricia Mothes

<p>The North Andean Sliver (hereinafter NAS) lies at the northwestern end of the South American plate (hereinafter SOAM). This extensive area exhibits a complex deformation process controlled by the interactions of Nazca, Caribbean, South America plates, and Panama block, producing crustal seismicity, arc-continental collision, and subduction processes. Previous models based on partial GPS data sets have estimated the NAS kinematics as a single rigid block moving towards northeast  at 8-10 mm/yr (Nocquet et al. 2014, Mora-Paez et al 2019). By contrary, geologic interpretations as well as seismotectonic data propose more complex kinematic models based on the interaction of several blocks (Audemard et al 2014, Alvarado et al 2016).  Here, we present an updated and most extensive interseismic horizontal velocity field derived from continuous and episodic GPS data between 1994 and 2019 that encompasses the whole North Andean Sliver.  We then interpret it, developing a kinematic elastic block model in order to simultaneously estimate rigid block rotations, consistent slip rates at faults and the spatial distribution of interseismic coupling at the Nazca/NAS megathrust interface. Our model is not constrained either by a priori information derived from geologic slip rates or by a priori information of creeping faults. In contrast with previous simplest models, our model will allow us to estimate the degree of slip partitioning more precisely along the NAZCA/SOAM convergence as well as an improved model of interseismic coupling. We will discuss our coupling distribution with respect to previous models, and our block geometry quantifying the goodness of fit, resolution,  and considering its consistency with geological interpretations.</p>

2020 ◽  
Author(s):  
Quentin Bletery ◽  
Cavalié Olivier ◽  
Jean Mathieu Nocquet ◽  
Théa Ragon

2000 ◽  
Vol 54 (5) ◽  
pp. 721-730 ◽  
Author(s):  
S. S. Kharintsev ◽  
D. I. Kamalova ◽  
M. Kh. Salakhov

The problem of improving the resolution of composite spectra with statistically self-similar (fractal) noise is considered within the framework of derivative spectrometry. An algorithm of the numerical differentiation of an arbitrary (including fractional) order of spectra is produced by the statistical regularization method taking into account a priori information on statistical properties of the fractal noise. Fractal noise is analyzed in terms of the statistical Hurst method. The efficiency and expedience of this algorithm are exemplified by treating simulated and experimental IR spectra.


Sign in / Sign up

Export Citation Format

Share Document