Millet arrived in the South China Coast around 5,500 years ago

Author(s):  
Jinqi Dai ◽  
Xipeng Cai ◽  
Jianhui Jin ◽  
Wei Ge ◽  
Yunming Huang ◽  
...  

<p>Crop dispersal has long been recognised as an important topic in agricultural archaeology and food globalisation. One of most pressing questions facing archaeologists is determining when and where millet arrived in the South China Coast. Our study focused on the millet phytoliths remains from three Neolithic sites in southeast coastal Fujian. Multiple dating methods, including charred carbon dating, phytolith carbon dating, and optically stimulated luminescence were used to construct the chronologies of the sites. The dating results showed that BTS was initially occupied at approximately 5,500 cal a BP. The millet phytoliths recovered in this study are likely the earliest millet remains found in Fujian, suggesting that millet arrived in the South China Coast at least 5,500 years ago. However, questions about whether millet agriculture in northern China dispersed southward through the inland or coastal routes remain unanswered. Given that millet remains were found in Jiangxi and northern Fujian – two important gaps in the inland route – no earlier than 5,000 cal a BP, it seems that the millet remains recovered from the coastal sites of Fujian might have dispersed following a coastal route from northern China. Nevertheless, Fujian is an important junction of the coastal route for the dispersal of millet from northern China. These findings not only provide new insights to millet dispersal routes in China, but also have significant implications for crop communications between Taiwan and mainland China during the Neolithic age.</p><p> </p><p> </p>

2007 ◽  
Vol 97 (1-4) ◽  
pp. 57-68 ◽  
Author(s):  
K. S. Liu ◽  
J. C. L. Chan ◽  
W. C. Cheng ◽  
S. L. Tai ◽  
P. W. Wong

2008 ◽  
Vol 47 (1) ◽  
pp. 326-338 ◽  
Author(s):  
Martin L. M. Wong ◽  
Johnny C. L. Chan ◽  
Wen Zhou

Abstract The intensity change of past (1976–2005) tropical cyclones that made landfall along the south China coast (110.5°–117.5°E) is examined in this study using the best-track data from the Hong Kong Observatory. The change in the central pressure deficit (environmental pressure minus central pressure) and maximum surface wind after landfall are found to fit fairly well with an exponential decay model. Of the various potential predictors, the landfall intensity, landward speed, and excess of 850-hPa moist static energy have significant influence on the decay rates. Prediction equations for the exponential decay constants are developed based on these predictors.


2020 ◽  
pp. 1-47
Author(s):  
Chenli Wang ◽  
Kun Zhao ◽  
Anning Huang ◽  
Xingchao Chen ◽  
Xiaona Rao

AbstractSouth China coast suffers frequent heavy rainfall every warm-season. Based on the objective classification method of principle components analysis, the key role of synoptic pattern in determining the heavy rainfall processes occurred over the South China coast in warm season during 2008-2018 is examined in this study. We found heavy rainfall occurs most frequently under three typical synoptic patterns (P1-P3 hereafter) characterized by strong low-level onshore winds. P1 and P3 are featured by a prevailing southwesterly monsoonal flow in the lower troposphere, with heavy rainfall frequently occurring over the inland windward region in the afternoon associated with the orographic lifting and solar heating. The onshore wind of P3 is stronger than P1 as the western Pacific subtropical high extends more westward to 122°E, which induces stronger low-level convergence along the coastline than P1 when the ageostrophic wind veers from offshore to onshore direction in the early morning. Hence, a secondary early morning rainfall peak can be found along the coastline. P2 is characterized by a low-level vortex located over the southwest of south China. Heavy rainfall under P2 usually initiate over the western part of the coastal region in the morning and then propagate towards inland in the afternoon. Overall, the synoptic patterns strongly determine the spatial distribution and diurnal cycle of heavy rainfall over the South China coast. It is closely related to the diurnally varying low-level onshore winds rather than the low-level jets, as well as the different interactions between the low-level onshore winds and the local orography, coastline and land-sea breeze circulations under different synoptic patterns.


Sign in / Sign up

Export Citation Format

Share Document