Microbiological research program in deep HRW repository «Yeniseisky»: plans and first results

Author(s):  
Alexey Safonov ◽  
Elena Abramova ◽  
Nadezhda Popova ◽  
Grigory Artemiev ◽  
Kirill Boldyrev

<p>The concept of engineered geologic disposal has been developed for the safe long-term management of long-lived high-level radioactive waste (HRW) by many countries. Russian Federation evaluates the “Yeniseiskiy” Nizhnekansky granite-gneiss crystalline formation, in Krasnoyarsk region. To this date microbiological studies became an integral part of safety assessment in Russia like other countries.</p><p>A multi-barrier concept was used to create super-container (SC). SC contains a primary vitrified radioactive waste package, placed in the carbon steel casing, bentonite and aluminate concrete layers placed between the casing and inner IC surface. All selected barrier materials are potential areas for biogenic processes.</p><p>The talk presented a plan of experimental research of biogenic processes and first step results. Microbiological studies at the first stage are carried out in laboratory conditions, at the second stage they will be carried out under the conditions of URL and include:</p><p>- changes of host rock sorption and diffusion properties due to biofilms formation,</p><p>- assessment of the possibility biocolloidal particles formation and determination clay and ferruginous colloids stability during biogenic processes;</p><p>To date, the study of the phylogenetic and functional diversity of the microflora of the granite-gneiss massif, near-surface waters, and clay materials that will be used in disposal has been carried out. It has been established that microorganisms, isolated from samples, collected nearby the zone of the future repository are capable of participating in a number of undesirable processes, including steel corrosion acceleration, the formation of biogenic gases, and changes in the properties of clay materials. Our studies also show that microbial communities of clays are activated by hydrogen, which is a product of steel corrosion and water radiolysis. At the first stage, we found an increase in the corrosion of carbon steel in the presence of microorganisms sampled from the study area.</p><p>An acceleration of the corrosion rate of carbon steel (from 1.3 to 1.9 μm/year) was observed with an increase in temperature from 20 to 50<sup>0</sup>С, the calculated value of the activation energy was 22 kJ/mol * K. Based on the data obtained, a kinetic model of carbon steel corrosion in the presence of microorganisms was created, including both the inclusion of the activation energy and the inhibition of corrosion by the formed corrosion products.</p><p> </p>

2020 ◽  
Author(s):  
Alexey Safonov ◽  
Nadezhda Popova ◽  
Elena Spirina ◽  
Elena Abramova ◽  
Nadezhda Philippova ◽  
...  

<p>Clay minerals are widely used as materials for construction of engineered barriers for nuclear waste and spent fuel repositories all over the world due to perfect isolation properties and high sorption capacity. Unwanted microbiological processes that occur in geological repository can cause deterioration of clay barrier materials, which may significantly affect long-term safety of the repository. It is important to note that such unwanted processes could be caused both by native microbial population and bacteria brought in from outside during the construction of the repository.</p><p>This paper aims to develop a general concept that could be used to prove the risk of unwanted microbial processes’ occurrence in clay materials.  </p><p>Some features of mineral composition of clay materials, including the content of iron, sulphur, phosphorus, organic and mineral carbon, provide the basis for the concept. The ratios of free mono- and di-valent cations present in the solution (Na-K-Ca-Mg) are also taken into account. Another approach presumes microflora composition analysis by means of high-efficient 16S rRNA sequencing method. In addition, the results of several tests dedicated to microbial communities’ stimulation are discussed. These include tests on hydrogen or organic substance addition as electron donors with subsequent standard tests on metabolic activity evaluation, MTT test and respiration assessment of microbial population, which is represented by both planktonic cells and cells incorporated into biofilms. The developed concept was used to assess clay materials found in Russian Federation that could potentially be used to construct engineered safety barriers. These data formed the basis for the formation of a database of microbial safety of engineering barrier materials for radioactive waste storage.</p>


MRS Advances ◽  
2020 ◽  
Vol 5 (5-6) ◽  
pp. 275-282 ◽  
Author(s):  
Vsevolod Igin ◽  
Victor Krasilnikov

Abstract:The paper provides generic overview of legal and regulatory framework of radioactive waste management activities held in Russian Federation and national operator responsibilities and accomplishments. It gives a short description of waste classification scheme used and plans for radioactive waste disposal. In particular the paper provides information on the plans of the FEDERAL STATE UNITARY ENTERPRISE "National operator for radioactive waste management" to construct and operate several near-surface disposal facilities for low and intermediate level waste with total capacity up to 550 000 cubic meter. The paper also provides detailed information on the steps of high-level waste disposal program including site-selection, construction phase of the underground research laboratory (URL) near the city of Zheleznogorsk, Krasnoyarsk Region and research program after the construction of the URL. The paper also describes Russian system and state policy in the field of RW management and gives recommendations for future implementers.


2021 ◽  
Vol 1 ◽  
pp. 103-104
Author(s):  
Nikoleta Morelová ◽  
Kathy Dardenne ◽  
Nicolas Finck ◽  
Frank Heberling ◽  
Volker Metz ◽  
...  

Abstract. Carbon steel is a potential canister material for the disposal of high-level radioactive waste in deep geological repositories in clays and clay rocks. Bentonite is considered as a potential backfill material for those multi-barrier systems. To predict the long-term performance and for safety assessment the knowledge of canister corrosion behavior is important. The corrosion products formed and mineralogically altered bentonite at the canister/bentonite interface can potentially provide an additional barrier against radionuclide migration. In-situ corrosion experiments were performed at the Mont Terri underground research laboratory. Coupons of carbon steel were embedded in Volclay MX-80 bentonite with controlled densities, installed in a borehole under simulated repository and anaerobic conditions and exposed to natural Opalinus clay porewater for a period up to 5.5 years (Smart et al., 2017). In the present study, the bentonite layer at the canister/bentonite interface was characterized by complementary microscopic and spectroscopic techniques (XPS, SEM-EDX, µXANES) under anoxic conditions. The interface revealed reddish-brown staining up to 2 mm depth into the bentonite in the zone adjacent to the steel in all three obtained samples. The XPS analysis revealed formation of sulfides at the interface consisting of iron and other trace metals present in the steel. The SEM-EDX analyses of the interface (embedded cross-cut with steel removed) showed different degrees of calcium enrichment in the bentonite adjacent to the metal for various samples. The µXRF analysis performed on the bentonite at the interface showed a scarce or distinct calcium-enriched rim up to 100 µm into the bentonite and iron-enriched rim depending on the sample (one sample in Fig. 1), while µXANES analysis revealed formation of iron silicate compounds in the reacted reddish-brown zone. The iron appears to displace calcium from the interlayer sites in montmorillonite. The calcium then precipitates at the interface as calcite. The extent of this process seems to be strongly related to the bentonite density. The steel coupon was removed prior to embedding, with the location marked as resin in Fig. 1. A line scan from the edge towards the bulk bentonite did not indicate any systematic gradient in the Fe2+/3+ ratio. The formation of mixed Fe2+/3+ silicate compounds appears to be heterogeneous. This work contributes to an increasing understanding of steel corrosion mechanisms in clay, which can improve the robustness of canister lifetime predictions.


2008 ◽  
Vol 28-1 (2) ◽  
pp. 1125-1125
Author(s):  
Ryutaro Koike ◽  
Tamotsu Kozaki ◽  
Hidenori Takamatsu ◽  
Natsuko Noda ◽  
Masatoshi Kitaichi ◽  
...  

2013 ◽  
Vol 807-809 ◽  
pp. 1207-1210 ◽  
Author(s):  
Hai Ying Chen ◽  
Chun Ming Zhang ◽  
Shao Wei Wang ◽  
Qiao Feng Liu ◽  
Jing Ru Han

Radioactive waste disposal is one of the most sensitive environmental problems. As the arriving of decommissioning of early period nuclear facilities in China, large amounts of very low-level radioactive waste will be produced inevitably. The domestic and abroad definitions about very low-level radioactive waste and its disposal were introduced, and then siting principles of near surface disposal of very low-level radioactive waste were discussed. The near surface disposal sites’ natural barriers were analyzed from the crustal structure and the radionuclide adsorption characteristics of natural barriers. The near surface disposal sites’ engineering barriers were analyzed from the repository design and the repository barrier materials selection. Finally, the improving direction of very low-level radioactive waste disposal was proposed, which would promote the study of very low-level radioactive waste disposal in China.


Sign in / Sign up

Export Citation Format

Share Document