An integrated Bayesian stratigraphic correlation approach for the Cambrian Explosion

Author(s):  
Matthias Sinnesael ◽  
Andrew R. Millard ◽  
Martin R. Smith

<p>The Cambrian Explosion is characterised by a large diversification of life. The precise nature of this major evolutionary event is heavily debated, featuring anomalously fast versus more gradual evolutionary scenarios. Our ability to distinguish between such scenarios hinges on the quality of global correlations and corresponding timescales. With Cambrian temporal uncertainties often in the order of millions of years, establishing such correlations and timelines is a challenging task. Here, we present a novel approach to this problem based on a probabilistic Bayesian conceptual framework. Major advantages of the Bayesian approach include the consideration of multiple information sources in a single analysis and explicit uncertainty formulations.</p><p>In the absence of good index fossils, early Cambrian correlations rely heavily on carbon isotope chemostratigraphy and ‘expert-based’ correlations. Inspired by approaches in the radiocarbon community, we have been exploring representations of stable carbon isotope variations using random walk and spline fitting models. Implementation is undertaken using Markov-chain Monte-Carlo (MCMC) approaches. Temporal calibration is mainly dependent on published state-of-the-art U-Pb zircon dating. Our model also allows for the use of different sedimentary facies. Simultaneous analysis of several sections and multiple stratigraphic variables will allow each section to inform the correlation of every other, leading to a single, objectively derived and quantitative reference curve. Ultimately, the aim is to have a coupled Bayesian model setup of both stratigraphy and morphological evolution of the fossil record. These models will better inform us on the origins of diverse animal-dominated ecosystems and their impact on Earth processes.</p>

2020 ◽  
Author(s):  
Johan Vellekoop ◽  
Pim Kaskes ◽  
Sinnesael Matthias ◽  
John W. M. Jagt ◽  
Robert P. Speijer ◽  
...  

<p>The youngest time interval of the Cretaceous Period is known as the Maastrichtian, a reference to the marine strata exposed in the area surrounding the city of Maastricht, in the Netherlands-Belgium border region. The stratigraphic succession at the original type-locality of the Maastrichtian (ENCI quarry, NL) only covers the upper part of the Maastrichtian Stage as it is nowadays defined. However, in combination with similar rock sequences in several other quarries (e.g. Hallembaye, Curfs) in the region, a substantial part of the Maastrichtian Stage is represented.</p><p>While the type-Maastrichtian strata have provided a wealth of paleontological data, comparatively little geochemical work has been carried out on this succession. So far, the age assessment of, and stratigraphic correlation with, the type-Maastrichtian has been largely based on biostratigraphy and preliminary attempts at cyclostratigraphy, techniques that are hampered by bioprovincialism and the presence of stratigraphic gaps in the succession. In recent years, stable carbon isotope stratigraphy has been proven to be a powerful tool for correlating Upper Cretaceous strata on a global scale. When calibrated with biostratigraphic events, carbon isotope stratigraphy can be used to test the synchroneity of bio-events and reconcile inter-regional biostratigraphic schemes. Therefore, we have generated the first high-resolution stable carbon isotope stratigraphy for the type-Maastrichtian, using the extensive sample set acquired in the context of the Maastrichtian Geoheritage Project. In combination with elemental data generated using µXRF (e.g. Ca, Si, Al, Ti, Fe wt%), our record presents the first high-resolution chemostratigraphy for the type-Maastrichtian. This new chemostratigraphic framework enables us to refine the age-model for studied strata, and allows a better regional and global correlation with the type-Maastrichtian successions, placing the paleontological records from the type-Maastrichtian in a global context.  </p>


PalZ ◽  
2021 ◽  
Author(s):  
Xingliang Zhang ◽  
Degan Shu

AbstractThe Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.


Sign in / Sign up

Export Citation Format

Share Document