Information Physical Complexity, Causality and Predictability across Coevolutionary Spacetimes: Theory and Hydro-Climatic Applications

Author(s):  
Rui A. P. Perdigão ◽  
Julia Hall

<p>Complex System Dynamics, Causality and Predictability pose fundamental challenges even under well-defined structural stochastic-dynamic conditions where the laws of motion and system symmetries are known.</p><p>However, the edifice of complexity can be profoundly transformed by structural-functional coevolution and non-recurrent elusive mechanisms changing the very same invariants of motion that had been taken for granted. This leads to recurrence collapse and memory loss, precluding the ability of traditional stochastic-dynamic, information-theoretic and artificial intelligence approaches to provide reliable information about the non-recurrent emergence of fundamental new properties absent from the a priori kinematic geometric and statistical features.</p><p>Unveiling causal mechanisms and eliciting system dynamic predictability under such challenging conditions is not only a fundamental problem in mathematical and statistical physics, but also one of critical importance to dynamic modelling, risk assessment and decision support e.g. regarding non-recurrent critical transitions and extreme events.</p><p>In order to address these challenges, generalized metrics in non-ergodic information physics are hereby introduced for unveiling elusive dynamics, causality and predictability of complex dynamical systems undergoing far-from-equilibrium structural-functional coevolution, building from Perdigão (2017, 2018, 2020a, 2020b), Perdigão et al. (2020).</p><p>With these methodological developments at hand, hidden dynamic information is hereby brought out and explicitly quantified even beyond post-critical regime collapse, long after statistical information is lost. The added causal insights and operational predictive value are further highlighted by evaluating the new information metrics among statistically independent variables, where traditional techniques therefore find no information links. Notwithstanding the factorability of the distributions associated to the aforementioned independent variables, synergistic and redundant information are found to emerge from microphysical, event-scale codependencies in far-from-equilibrium nonlinear statistical mechanics.</p><p>The findings are illustrated to shed light onto fundamental causal mechanisms and unveil elusive dynamic predictability of non-recurrent critical transitions and extreme events across multiscale hydro-climatic problems.</p><p> </p><p>References:</p><p>Perdigão R.A.P. (2017): Fluid Dynamical Systems: from Quantum Gravitation to Thermodynamic Cosmology. https://doi.org/10.46337/mdsc.5091.</p><p>Perdigão R.A.P. (2018): Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence. Entropy, 20(1), 26. https://doi.org/10.3390/e20010026.</p><p>Perdigão R.A.P. (2020a): Synergistic Dynamic Causation and Prediction in Coevolutionary Spacetimes. https://doi.org/10.46337/mdsc.5546.</p><p>Perdigão, R.A.P. (2020b): Information Physical Artificial Intelligence in Complex System Dynamics: Breaking Frontiers in Nonlinear Analytics, Model Design and Socio-Environmental Decision Support in a Coevolutionary World. https://doi.org/10.46337/200930.</p><p>Perdigão R.A.P., Ehret U., Knuth K.H. & Wang, J. (2020) Debates: Does information theory provide a new paradigm for Earth science? Emerging concepts and pathways of information physics. Water Resources Research, 56(2), 1-13. https://doi.org/10.1029/2019WR025270.</p><p> </p>

2020 ◽  
Author(s):  
Rui A. P. Perdigão ◽  
Julia Hall

Causality and Predictability of Complex Systems pose fundamental challenges even under well-defined structural stochastic-dynamic conditions where the laws of motion and system symmetries are known. However, the edifice of complexity can be profoundly transformed by structural-functional coevolution and non-recurrent elusive mechanisms changing the very same invariants of motion that had been taken for granted. This leads to recurrence collapse and memory loss, precluding the ability of traditional stochastic-dynamic and information-theoretic metrics to provide reliable information about the non-recurrent emergence of fundamental new properties absent from the a priori kinematic geometric and statistical features. Unveiling causal mechanisms and eliciting system dynamic predictability under such challenging conditions is not only a fundamental problem in mathematical and statistical physics, but also one of critical importance to dynamic modelling, risk assessment and decision support e.g. regarding non-recurrent critical transitions and extreme events. In order to address these challenges, generalized metrics in non-ergodic information physics are hereby introduced for unveiling elusive dynamics, causality and predictability of complex dynamical systems undergoing far-from-equilibrium structural-functional coevolution. With these methodological developments at hand, hidden dynamic information is hereby brought out and explicitly quantified even beyond post-critical regime collapse, long after statistical information is lost. The added causal insights and operational predictive value are further highlighted by evaluating the new information metrics among statistically independent variables, where traditional techniques therefore find no information links. Notwithstanding the factorability of the distributions associated to the aforementioned independent variables, synergistic and redundant information are found to emerge from microphysical, event-scale codependencies in far-from-equilibrium nonlinear statistical mechanics. The findings are illustrated to shed light onto fundamental causal mechanisms and unveil elusive dynamic predictability of non-recurrent critical transitions and extreme events across multiscale hydro-climatic problems.


2020 ◽  
Author(s):  
Avishek Choudhury

UNSTRUCTURED Objective: The potential benefits of artificial intelligence based decision support system (AI-DSS) from a theoretical perspective are well documented and perceived by researchers but there is a lack of evidence showing its influence on routine clinical practice and how its perceived by care providers. Since the effectiveness of AI systems depends on data quality, implementation, and interpretation. The purpose of this literature review is to analyze the effectiveness of AI-DSS in clinical setting and understand its influence on clinician’s decision making outcome. Materials and Methods: This review protocol follows the Preferred Reporting Items for Systematic Reviews and Meta- Analyses reporting guidelines. Literature will be identified using a multi-database search strategy developed in consultation with a librarian. The proposed screening process consists of a title and abstract scan, followed by a full-text review by two reviewers to determine the eligibility of articles. Studies outlining application of AI based decision support system in a clinical setting and its impact on clinician’s decision making, will be included. A tabular synthesis of the general study details will be provided, as well as a narrative synthesis of the extracted data, organised into themes. Studies solely reporting AI accuracy an but not implemented in a clinical setting to measure its influence on clinical decision making were excluded from further review. Results: We identified 8 eligible studies that implemented AI-DSS in a clinical setting to facilitate decisions concerning prostate cancer, post traumatic stress disorder, cardiac ailment, back pain, and others. Five (62.50%) out of 8 studies reported positive outcome of AI-DSS. Conclusion: The systematic review indicated that AI-enabled decision support systems, when implemented in a clinical setting and used by clinicians might not ensure enhanced decision making. However, there are very limited studies to confirm the claim that AI based decision support system can uplift clinicians decision making abilities.


Author(s):  
Andreas Brandsæter ◽  
Ottar L Osen

The advent of artificial intelligence and deep learning has provided sophisticated functionality for sensor fusion and object detection and classification which have accelerated the development of highly automated and autonomous ships as well as decision support systems for maritime navigation. It is, however, challenging to assess how the implementation of these systems affects the safety of ship operation. We propose to utilize marine training simulators to conduct controlled, repeated experiments allowing us to compare and assess how functionality for autonomous navigation and decision support affects navigation performance and safety. However, although marine training simulators are realistic to human navigators, it cannot be assumed that the simulators are sufficiently realistic for testing the object detection and classification functionality, and hence this functionality cannot be directly implemented in the simulators. We propose to overcome this challenge by utilizing Cycle-Consistent Adversarial Networks (Cycle-GANs) to transform the simulator data before object detection and classification is performed. Once object detection and classification are completed, the result is transferred back to the simulator environment. Based on this result, decision support functionality with realistic accuracy and robustness can be presented and autonomous ships can make decisions and navigate in the simulator environment.


2019 ◽  
Vol 42 (3) ◽  
pp. 771-779 ◽  
Author(s):  
Tayyebe Shabaniyan ◽  
Hossein Parsaei ◽  
Alireza Aminsharifi ◽  
Mohammad Mehdi Movahedi ◽  
Amin Torabi Jahromi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document