scholarly journals Spin-up time from switching the microphysics scheme in the assimilation cycle and impacts on the precipitation forecast quality

2021 ◽  
Author(s):  
Sven Ulbrich ◽  
Christian Welzbacher ◽  
Kobra Khosravianghadikolaei ◽  
Michael Hoff ◽  
Alberto de Lozar ◽  
...  

<p>The SINFONY project at Deutscher Wetterdienst (DWD) aims to produce seamless precipitation forecast products from minutes up to 12 hours, with particular focus on convective events. While the near future predictions are typically from nowcasting procedures using radar data, the numerical weather prediction (NWP) aims at longer time scales. The lead-time in the latest available forecast is usually too long for merging both the nowcasting and NWP output to produce reliable seamless predictions.</p><p>At DWD, the current forecasts are produced by the short range numerical weather prediction (SRNWP) <span>making use of a</span> continuous assimilation cycle with relatively long cutoff times and using 1-moment microphysics. In order to reduce the differences in the precipitation to the <span>nowcasting </span>on the NWP side, we use two different approaches. First, we reduce the lead-time from the model start by running 1-hourly forecasts based on an assimilation cycle with shorter data cutoff. Secondly, we use new observational systems in the assimilation cycle, such as radar or satellite data to capture and represent strong convective activity. This procedure is called Rapid Update Cycle (RUC). As an additional measure, we introduce a 2-Moment microphysics scheme into the numerical model, resulting in a better representation of the radar reflectivities. In order to keep the model state similar to that of the SRNWP, the RUC is a time limited assimilation cycle starting from forecasts of the SRNWP at pre-defined times.</p><p>The introduction of the 2-Moment scheme leads to a spin-up affecting both the assimilation cycle and the short forecasts. The resulting effects are analysed by comparison with the corresponding assimilation cycle using the 1-Moment scheme. As a complementary approach for the analysis, the routine cycle is run with the 2-Moment scheme. The forecast quality is used as a measure to compare the results with respect to precipitation and additional observed parameters. It is shown in how far the resulting improvements are related to the assimilation and momentum scheme, or to the higher frequency of forecasts.</p>

2021 ◽  
Vol 4 ◽  
pp. 50-68
Author(s):  
S.А. Lysenko ◽  
◽  
P.О. Zaiko ◽  

The spatial structure of land use and biophysical characteristics of land surface (albedo, leaf index, and vegetation cover) are updated using the GLASS (Global Land Surface Satellite) and GLC2019 (Global Land Cover, 2019) modern satellite databases for mesoscale numerical weather prediction with the WRF model for the territory of Belarus. The series of WRF-based numerical experiments was performed to verify the influence of the updated characteristics on the forecast quality for some difficult to predict winter cases. The model was initialized by the GFS (Global Forecast System, NCEP) global numerical weather prediction model. It is shown that the use of high-resolution land use data in the WRF and the consideration of the new albedo and leaf index distribution over the territory of Belarus can reduce the root-mean-square error (RMSE) of short-range (to 48 hours) forecasts of surface air temperature by 16–33% as compared to the GFS. The RMSE of the temperature forecast for the weather stations in Belarus for a forecast lead time of 12, 24, 36, and 48 hours decreased on average by 0.40°С (19%), 0.35°С (10%), 0.68°С (23%), and 0.56°С (15%), respectively. The most significant decrease in RMSE of the numerical forecast of temperature (up to 2.1 °С) was obtained for the daytime (for a lead time of 12 and 36 hours), when positive feedbacks between albedo and temperature of the land surface are manifested most. Keywords: numerical weather prediction, WRF, digital land surface model, albedo, leaf area index, forecast model validation


2009 ◽  
Vol 4 (4) ◽  
pp. 600-605 ◽  
Author(s):  
Hadi Kardhana ◽  
◽  
Akira Mano ◽  

Numerical weather prediction (NWP) is useful in flood prediction using a rainfall-runoff model. Uncertainty occurring in the forecast, however, adversely affects flood prediction accuracy, in addition to uncertainty inherent in the rainfall-runoff model. Clarifying this uncertainty and its magnitude is expected to lead to wider forecast applications. Taking the case of Japan’s Shichikashuku Dam, 6 flood events between 2002 and 2007 were analyzed. NWP was based on short-range forecasts by the Japan Meteorological Agency (JMA). The rainfall-runoff model is based on a distributed tank model. This research calculates uncertainty by identifying and quantifying the relative error of forecasts by a) NWP and b) the runoff model. Results showed that NAP is the main cause of flood forecast uncertainty. They also showed the correlation between forecast lead time and uncertainty. Uncertainty rises with longer lead time, corresponding to the magnitude of observed discharge and precipitation.


2019 ◽  
Vol 20 (2) ◽  
pp. 331 ◽  
Author(s):  
GEORGE VARLAS ◽  
PETROS KATSAFADOS ◽  
GERASIMOS KORRES ◽  
ANASTASIOS PAPADOPOULOS

The forecast skill of numerical weather prediction (NWP) models relies, among other factors such as the prediction itself and the assimilation scheme, on the accuracy of the observations utilized in the assimilation systems for the production of initial and boundary conditions. One of the most crucial parameters in weather forecasting is the sea surface temperature (SST). In the majority of NWP models, the initial and lower boundary conditions involve gridded (SST) analyses which consist of data obtained by buoys, ships and satellites. The main aim of this study is to integrate Argo temperature measurements in gridded SST analyses and to assess their impact on the forecast skill of a limited area atmospheric model. Argo floats are “state-of-the-art” oceanographic instruments producing high-quality temperature profiles for the ice-free ocean. In this study, Argo temperatures are incorporated into gridded SST fields without applying any smoothing method in order to directly assess the impact of Argo temperatures on numerical weather prediction. Their impact is assessed under intense weather cyclonic conditions at the Mediterranean Sea by performing two sensitivity simulations either incorporating or not Argo temperatures into gridded SST fields used in the generation of the initial and lower boundary conditions. The results indicate that the inclusion of Argo-measured near-surface temperatures in the lower boundary condition modifies the surface heat fluxes, thus affecting mean sea level pressure and precipitation. In particular, an overall improvement of the precipitation forecast skill up to 3% has been demonstrated. Moreover, the incorporation of Argo temperatures affects the simulated track and intensity of the cyclone over the Balkan Peninsula.


Author(s):  
Tim Carlsen ◽  
Morten Køltzow ◽  
Trude Storelvmo

Abstract In-cloud icing is a major hazard for aviation traffic and forecasting of these events is an important task for weather agencies worldwide. A common tool utilised by aviation forecasters is an icing intensity index based on supercooled liquid water from numerical weather prediction models. We seek to validate the modified microphysics scheme, ICE-T, in the HARMONIE-AROME numerical weather prediction model with respect to aircraft icing. Icing intensities and supercooled liquid water derived from two 3-month winter season simulations with the original microphysics code, CTRL, and ICE-T are compared with pilot reports of icing and satellite retrieved values of liquid and ice water content from CloudSat-CALIPSO and liquid water path from AMSR-2. The results show increased supercooled liquid water and higher icing indices in ICE-T. Several different thresholds and sizes of neighbourhood areas for icing forecasts were tested out, and ICE-T captures more of the reported icing events for all thresholds and nearly all neighbourhood areas. With a higher frequency of forecasted icing, a higher false-alarm ratio cannot be ruled out, but is not possible to quantify due to the lack of no-icing observations. The increased liquid water content in ICE-T shows a better match with the retrieved satellite observations, yet the values are still greatly underestimated at lower levels. Future studies should investigate this issue further, as liquid water content also has implications for downstream processes such as the cloud radiative effect, latent heat release, and precipitation.


2017 ◽  
Vol 17 (22) ◽  
pp. 13983-13998 ◽  
Author(s):  
Magnus Lindskog ◽  
Martin Ridal ◽  
Sigurdur Thorsteinsson ◽  
Tong Ning

Abstract. Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.


2020 ◽  
Author(s):  
Silas Michaelides ◽  
Serguei Ivanov ◽  
Igor Ruban ◽  
Demetris Charalambous ◽  
Filippos Tymvios

<p>Quantitative Precipitation Forecasting (QPF) is among the most central challenges of atmospheric prediction systems. The primary aim of such a task is the generation of accurate estimates of heavy precipitation events associated with severe weather, atmospheric fronts and heavy convective rainfalls. QPF is still among the most intricate challenges of Numerical Weather Prediction. The efforts in this direction are mainly concentrated on improving model formulations for microphysics and convective process and remote sensing data assimilation.</p><p>This paper describes the first results with the regional radar signal processing chain that provides the radar data assimilation (RDA) in the Harmonie convection permitting numerical model. This task is performed for a case study focusing on a wintertime frontal cyclone over the island of Cyprus. Reflectivity measurements from two weather radars, at Larnaka and Paphos, are exploited for simulations of severe weather conditions associated with this synoptic-scale system. Through the variational assimilation procedure, the model takes into account the atmospheric processes occurring in the upstream flow which can be outside the area of radar measurements. The focus is on the precipitable water vapor content and its changes during the cyclone evolution, as well as on the impact of the radar data assimilation on precipitation estimates.</p><p>The results show that the numerical experiments exhibit, in general, a suitable simulation of precipitable water at different stages of the cyclone. In particular, the bulk of the rainfall volume exhibits three stages: intensive rain on the cyclone's frontal zone, weaker precipitation immediately behind the front, and the secondary enhancement of rainfall. The largest corrections due to RDA are of up to 5 mm and occur during the approach of the cyclone frontal zone in a form of enhanced rainfall over the whole area, but more prominently in weak precipitation locations.</p>


2017 ◽  
Author(s):  
Magnus Lindskog ◽  
Martin Ridal ◽  
Sigurdur Thorsteinsson ◽  
Tong Ning

Abstract. Atmospheric moisture-related information obtained from Global Navigation Satellite System (GNSS) observations from ground-based receiver stations of the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art km-scale numerical weather prediction system. Different processing techniques have been implemented to derive the the moisture-related GNSS information in the form of Zenith Total Delays (ZTD) and these are described and compared. In addition full scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the following forecast quality. The sensitivity of results to aspects of the data processing, observation density, bias-correction and data assimilation have been investigated. Results show a benefit on forecast quality of using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 168
Author(s):  
Aisar Ashra M. Ashri ◽  
Wardah Tahir ◽  
Nurul Syahira M. Harmay ◽  
Intan Shafeenar A. Mohtar ◽  
Sazali Osman ◽  
...  

Intense hydrological event such as floods are increasing lately especially in Peninsular Malaysia. Therefore, it is important to forecast the intense rainfall as part of flood preparedness and mitigation measures. In this study, Numerical Weather Prediction (NWP) model precipitation outputs using Weather Research and Forecasting (WRF) with horizontal resolution of 3 km have been validated against observed rainfall data measurements for its performance measurement. Forecasted rainfall event data of three (3) states in the East Coast Region; Kelantan, Terengganu and Pahang were evaluated and compared with the observed rainfall data before statistically verifying their accuracy using False Alarm Ratio (FAR) and Probability of Detection (POD). The results indicate a very promising potential of the models in producing quantitative precipitation forecast (QPF) for flood forecasting purpose in Kelantan, Terengganu and Pahang. Since these three states, which are located in the East Coast region of Peninsular Malaysia experienced annual flood event, accurate forecast rainfall data can be used to improve forecast information for flood indicator.   


Sign in / Sign up

Export Citation Format

Share Document