PAOS, the Physical Optics Propagation model of the Ariel optical system

2021 ◽  
Author(s):  
Andrea Bocchieri ◽  
Enzo Pascale

<p>Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, is a medium-class space mission part of ESA's Cosmic Vision programme, due for launch in 2029. Ariel will survey a diverse sample of about 1000 extrasolar planets in the visible and infrared spectrum to answer questions about their composition, formation and evolution. Ariel mounts an off-axis Cassegrain telescope with a 1100 mm x 730 mm elliptical mirror and has two separate instruments (FGS and AIRS) that cover the 0.5-7.8 micron spectral range. To study the Ariel optical performance and related systematics, we developed PAOS, the Proper Ariel Optical Simulator, an End-to-End physical optics propagation model of the Ariel Telescope and subsystems based on PROPER, an optical propagation library for IDL, Python and Matlab. PAOS is a Python code that consists of a series of calls to PROPER library functions and procedures that reproduces the Ariel optical design, interleaved with additional code that can be specified according to the simulation. Using PAOS, we can investigate how diffraction affects the electromagnetic wavefront as it travels through the Ariel optical systems and the resulting PSFs in the photometric and spectroscopic channels of the mission. This enables to perform a large number of detailed analyses, both on the instrument side and on the optimisation of the Ariel mission. In particular, PAOS can be used to support the requirement on the maximum amplitude of the aberrations for the manufacturing of the Ariel primary mirror, as well as to develop strategies for in-flight calibration, e.g. focussing procedures for the FGS and AIRS focal planes, and to tackle systematics such as pointing jitter and vignetting. With the Ariel mission now in the process of finalizing the instrument design and the data analysis techniques, PAOS will greatly contribute in evaluating the Ariel payload performance with models to be included in the existing Ariel simulators such as ArielRad, the Ariel Radiometric model, and ExoSim, the Exoplanet Observation simulator, for the purpose of studying and optimising the science return from Ariel.</p>

2020 ◽  
Author(s):  
Giovanna Tinetti ◽  
Paul Eccleston ◽  
Theresa Lueftinger ◽  
Goran Pilbratt ◽  
Ludovic Puig ◽  
...  

<p class="Sectiontext"><span lang="EN-US">Ariel was selected as the fourth medium-class mission in ESA’s Cosmic Vision programme in the spring 2018. This paper provides an overall summary of the science and baseline design derived during the phase A and consolidated during the phase B1.</span></p> <p class="Sectiontext"><span lang="EN-US">During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System.</span></p> <p class="Sectiontext"><span lang="EN-US">Transit, eclipse and phase-curve spectroscopy means that no angular resolution is required. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. Detailed performance studies have demonstrated that the current mission design will achieve the necessary precision to observe all the Ariel target candidates within the mission lifetime.  </span></p> <p class="Sectiontext">The baseline integrated payload consists of 1-metre class, all-aluminium, off-axis Cassegrain telescope, feeding a collimated beam into two separate instrument modules. A combined Fine Guidance System / VIS-Photometer / NIR-Spectrometer contains 3 channels of photometry between 0.50 µm and 1.1 µm, of which two will also be used as a redundant system for provided guidance and closed-loop control to the AOCS. One further low resolution (R = ~15 spectrometer in the 1.1 µm – 1.95 µm waveband is also accommodated here. The other instrument module, the ARIEL IR Spectrometer (AIRS), provides spectral resolutions of between 30 – 100 for a waveband between 1.95 µm and 7.8 µm. The payload module is passively cooled to ~55 K by isolation from the spacecraft bus via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling to <42 K via an active Ne JT cooler. </p> <p>The Ariel mission payload is developed by a consortium of more than 50 institutes from 17 ESA countries, which include the UK, France, Italy, Poland, Spain, Belgium, the Netherlands, Austria, Denmark, Ireland, Czech Republic, Hungary, Portugal, Norway, Estonia, Germany and Sweden. A NASA contribution was approved in November 2019.</p>


2013 ◽  
Vol 02 (01) ◽  
pp. 1350004 ◽  
Author(s):  
A. M. GLAUSER ◽  
R. VAN BOEKEL ◽  
O. KRAUSE ◽  
TH. HENNING ◽  
B. BENNEKE ◽  
...  

Transit-spectroscopy of exoplanets is one of the key observational techniques used to characterize extrasolar planets and their atmospheres. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows undisturbed access to earth-like atmospheric features such as water or carbon dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESA's Cosmic Vision 2015–2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16μm simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission — the high photometric stability — influences the choice of spectrometer concept and fundamentally drives the instrument design. First performance evaluations underline the suitability of the elaborated design solution for the needs of the EChO mission.


2020 ◽  
Vol 50 (2-3) ◽  
pp. 303-328 ◽  
Author(s):  
Lorenzo V. Mugnai ◽  
Enzo Pascale ◽  
Billy Edwards ◽  
Andreas Papageorgiou ◽  
Subhajit Sarkar

Abstract ArielRad, the Ariel radiometric model, is a simulator developed to address the challenges in optimising the space mission science payload and to demonstrate its compliance with the performance requirements. Ariel, the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, has been selected by ESA as the M4 mission in the Cosmic Vision programme and, during its 4 years primary operation, will provide the first unbiased spectroscopic survey of a large and diverse sample of transiting exoplanet atmospheres. To allow for an accurate study of the mission, ArielRad uses a physically motivated noise model to estimate contributions arising from stationary processes, and includes margins for correlated and time-dependent noise sources. We show that the measurement uncertainties are dominated by the photon statistic, and that an observing programme with about 1000 exoplanetary targets can be completed during the primary mission lifetime.


2021 ◽  
Author(s):  
Theresa Lueftinger ◽  
Giovanna Tinetti ◽  
Paul Ecclestone ◽  
Jean-Christophe Salvignol ◽  
Salma Fahmy ◽  
...  

<p>Ariel, the atmospheric remote-sensing infrared exoplanet large-survey, is the recently adopted M4 mission within the Cosmic Vision science programme of ESA. The goal of Ariel is to investigate the atmospheres of planets orbiting distant stars in order to address the fundamental questions on how planetary systems form and evolve and to investigate in unprecedented detail the composition of a large number of exoplanetary atmospheres. During its 4-year mission, Ariel will observe hundreds of exoplanets ranging from Jupiter- and Neptune-size down to super-Earth size, in a wide variety of environments, in the visible and the infrared. The main focus of the mission will be on warm and hot planets in orbits close to their star. Some of the planets may be in the habitable zones of their stars, however. The analysis of Ariel spectra and photometric data will allow to extract the chemical fingerprints of gases and condensates in the planets’ atmospheres, including the elemental composition for the most favourable targets. The Ariel mission has been developed by a consortium of more than 60 institutes from 15 ESA member state countries, including UK, France, Italy, Poland, Spain, the Netherlands, Belgium, Austria, Denmark, Ireland, Hungary, Sweden, Czech Republic, Germany, Portugal, with an additional contribution from NASA. In this talk, we will review the science goals of the mission and give insight into the current status, both from the ESA and the Ariel Mission Consortium point of view.  </p>


2021 ◽  
Author(s):  
Andrea Bocchieri ◽  
Enzo Pascale ◽  
Lorenzo Mugnai ◽  
Quentin Changeat ◽  
Giovanna Tinetti

<p>Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, is a medium-class space mission part of ESA's Cosmic Vision program, due for launch in 2029. Ariel is the first mission dedicated to the spectroscopic observation of a diverse, statistical sample of about 1000 transiting exoplanets, obtaining spectra in transit, eclipse, or both, to answer questions about their composition, formation and evolution. Ariel has adopted a four-tiered approach in which all targets are observed with different SNRs to optimise the science return from the mission. Ariel has two separate instruments (FGS and AIRS) that will perform simultaneous observations across the 0.5-7.8 micron spectral range, which encompasses both the peak emission of exoplanets and the spectral signatures of key molecules. This will enable Ariel to collect statistical information on the composition and the thermal structure of exo-atmospheres, allowing it to reveal underlying trends in exoplanetary populations. In particular, transit spectroscopy is expected to provide the bulk of information on the chemical composition of exo-atmospheres, while eclipses are necessary to constrain their thermodynamic state. In this framework, I report a preliminary study of Ariel targets observed in emission: at first, I investigate the information content from Tier 1 data, where spectra from the full population of Ariel targets are observed with low SNR, and binned as if Ariel were a multi-band photometer to increase the SNR. I then investigate the effectiveness of Ariel in detecting chemical-physical trends in exoplanetary populations observed in Tier 2, designed to reach SNR in excess of 7 on spectra binned to roughly half the spectral resolution of the focal planes, as specified by the mission requirements.</p>


Photonics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 101 ◽  
Author(s):  
Angel García-Botella ◽  
Lun Jiang ◽  
Roland Winston

Nonimaging optics is focused on the study of techniques to design optical systems for the purpose of energy transfer instead of image forming. The flowline optical design method, based on the definition of the geometrical flux vector J, is one of these techniques. The main advantage of the flowline method is its capability to visualize and estimate how radiant energy is transferred by the optical systems using the concepts of vector field theory, such as field line or flux tube, which overcomes traditional raytrace methods. The main objective this paper is to extend the flowline method to analyze and design real 3D concentration and illumination systems by the development of new simulation techniques. In this paper, analyzed real 3D refractive and reflective systems using the flowline vector potential method. A new constant term of optical path length is introduced, similar and comparable to the gauge invariant, which produces a correction to enable the agreement between raytrace- and flowline-based computations. This new optical simulation methodology provides traditional raytrace results, such as irradiance maps, but opens new perspectives to obtaining higher precision with lower computation time. It can also provide new information for the vector field maps of 3D refractive/reflective systems.


Author(s):  
Tadayasu Dotani ◽  
Takashi Hasebe ◽  
Masashi Hazumi ◽  
Junji Inatani ◽  
Hirokazu Ishino ◽  
...  

2019 ◽  
Vol 215 ◽  
pp. 02001
Author(s):  
Stephanie Kunath

To accelerate the virtual product development of using optical simulation software, the Robust Design Optimization approach is very promising. Optical designs can be explored thoroughly by means of sensitivity analysis. This includes the identification of relevant input parameters and the modelling of inputs vs. outputs to understand their dependencies and interactions. Furthermore, the intelligent definition of objective functions for an efficient subsequent optimization is of high importance for multi-objective optimization tasks. To find the best trade-off between two or more merit functions, a Pareto optimization is the best choice. As a result, not only one design, but a front of best designs is obtained and the most appropriate design can be selected by the decision maker. Additionally, the best trade-off between output variation of the robustness (tolerance) and optimization targets can be found to secure the manufacturability of the optical design by several advanced approaches. The benefit of this Robust Design Optimization approach will be demonstrated.


2015 ◽  
Author(s):  
D. Greggio ◽  
D. Magrin ◽  
M. Munari ◽  
M. Zusi ◽  
R. Ragazzoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document