scholarly journals Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data

2019 ◽  
Vol 10 (3) ◽  
pp. 555-567 ◽  
Author(s):  
Davide Faranda ◽  
Yuzuru Sato ◽  
Gabriele Messori ◽  
Nicholas R. Moloney ◽  
Pascal Yiou

Abstract. We derive a minimal dynamical systems model for the Northern Hemisphere midlatitude jet dynamics by embedding atmospheric data and by investigating its properties (bifurcation structure, stability, local dimensions) for different atmospheric flow regimes. The derivation is a three-step process: first, we obtain a 1-D description of the midlatitude jet stream by computing the position of the jet at each longitude using ERA-Interim. Next, we use the embedding procedure to derive a map of the local jet position dynamics. Finally, we introduce the coupling and stochastic effects deriving from both atmospheric turbulence and topographic disturbances to the jet. We then analyze the dynamical properties of the model in different regimes: one that gives the closest representation of the properties extracted from real data; one featuring a stronger jet (strong coupling); one featuring a weaker jet (weak coupling); and one with modified topography. Our model, notwithstanding its simplicity, provides an instructive description of the dynamical properties of the atmospheric jet.

2018 ◽  
Author(s):  
Davide Faranda ◽  
Yuzuru Sato ◽  
Gabriele Messori ◽  
Nicholas R. Moloney ◽  
Pascal Yiou

Abstract. We derive a minimal dynamical model for the northern hemisphere mid-latitude jet dynamics by embedding atmospheric data, and investigate its properties (bifurcation structure, stability, local dimensions) for different atmospheric flow regimes. We derive our model according to the following steps: i) obtain a 1-D description of the mid-latitude jet-stream by computing the position of the jet at each longitude using the ERA-Interim reanalysis, ii) use the embedding procedure to derive a map of the local jet position dynamics, iii) introduce the coupling and stochastic effects deriving from both atmospheric turbulence and topographic disturbances to the jet. We then analyze the dynamical properties of the model in different regimes: i) one that gives the closest representation of the properties extracted from real data, ii) one featuring a stronger jet (strong coupling), iii) one featuring a weaker jet (low coupling), iv) modified topography. We argue that such a simple model provides a useful description of the dynamical properties of the atmospheric jet.


Author(s):  
Jennifer Francis ◽  
Natasa Skific

The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification—the enhanced sensitivity of high-latitude temperature to global warming—in only the last 10–20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming—and resulting weakening of the poleward temperature gradient—is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.


2021 ◽  
pp. 1-11
Author(s):  
S. Koshy-Chenthittayil ◽  
E. Dimitrova ◽  
E.W. Jenkins ◽  
B.C. Dean

Many biological ecosystems exhibit chaotic behavior, demonstrated either analytically using parameter choices in an associated dynamical systems model or empirically through analysis of experimental data. In this paper, we use existing software tools (COPASI, R) to explore dynamical systems and uncover regions with positive Lyapunov exponents where thus chaos exists. We evaluate the ability of the software’s optimization algorithms to find these positive values with several dynamical systems used to model biological populations. The algorithms have been able to identify parameter sets which lead to positive Lyapunov exponents, even when those exponents lie in regions with small support. For one of the examined systems, we observed that positive Lyapunov exponents were not uncovered when executing a search over the parameter space with small spacings between values of the independent variables.


2018 ◽  
Vol 180 ◽  
pp. 126-136 ◽  
Author(s):  
M.A. Chernigovskaya ◽  
B.G. Shpynev ◽  
K.G. Ratovsky ◽  
A.Yu. Belinskaya ◽  
A.E. Stepanov ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1193
Author(s):  
Chuchu Xu ◽  
Mi Yan ◽  
Liang Ning ◽  
Jian Liu

The upper-level jet stream, a narrow band of maximum wind speed in the mid-latitude westerlies, exerts a considerable influence on the global climate by modulating the transport and distribution of momentum, heat and moisture. In this study by using four high-resolution models in the Paleoclimate Modelling Intercomparison Project phase 3, the changes of position and intensity of the northern hemisphere westerly jet at 200 hPa in summer during the mid-Holocene (MH), as well as the related mechanisms, are investigated. The four models show similar performance on the westerly jet. At the hemispheric scale, the simulated westerly jet has a poleward shift during the MH compared to the preindustrial period. The warming in arctic and cooling in the tropics during the MH are caused by the orbital changes of the earth and the precipitation changes, and it could lead to the weakened meridional temperature gradient and pressure gradient, which might account for the poleward shift of the westerly jet from the thermodynamic perspective. From the dynamic perspective, two maximum centers of eddy kinetic energy are simulated over the North Pacific and North Atlantic with the north deviation, which could cause the northward movement of the westerly jet. The weakening of the jet stream is associated with the change of the Hadley cell and the meridional temperature gradient. The largest weakening is over the Pacific Ocean where both the dynamic and the thermodynamic processes have weakening effects. The smallest weakening is over the Atlantic Ocean, and it is induced by the offset effects of dynamic processes and thermodynamic processes. The weakening over the Eurasia is mainly caused by the dynamic processes.


2017 ◽  
Vol 24 (4) ◽  
pp. 713-725 ◽  
Author(s):  
Davide Faranda ◽  
Gabriele Messori ◽  
M. Carmen Alvarez-Castro ◽  
Pascal Yiou

Abstract. Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect – or are linked to phenomena which affect – human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes – namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948–2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.


2019 ◽  
Vol 39 (10) ◽  
pp. 5891-5921
Author(s):  
Daniel Glasscock ◽  
◽  
Andreas Koutsogiannis ◽  
Florian Karl Richter ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document