scholarly journals Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal

2016 ◽  
Vol 7 (4) ◽  
pp. 783-796 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.

2016 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already transgressed, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how societal monitoring and management of atmospheric CO2 concentrations with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a transgression of the planetary boundaries of land system change and ocean acidification. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries depend critically on the sensitivity and strength of the tCDR management system, as well as underlying emission pathways. While tCDR has the potential to ensure the Earth system's persistence within a carbon safe operating space under low emission pathways, this potential decreases rapidly for medium to high emission pathways.


2017 ◽  
Author(s):  
David P. Keller ◽  
Andrew Lenton ◽  
Vivian Scott ◽  
Naomi E. Vaughan ◽  
Nico Bauer ◽  
...  

Abstract. The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate threatening "severe, pervasive and irreversible" impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention on what is called Geoengineering, Climate Engineering, or Climate Intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called Carbon Dioxide Removal (CDR). The majority of future emission scenarios that stay well below 2 °C, and nearly all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the impacts and efficacy of the different types of proposed CDR. To address this need the Carbon Dioxide Removal Model Intercomparison Project (or CDR-MIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDR-MIP experiments that are designed to address questions concerning CDR-induced climate "reversibility", the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation/reforestation, as well as ocean alkalinization.


2018 ◽  
Vol 11 (3) ◽  
pp. 1133-1160 ◽  
Author(s):  
David P. Keller ◽  
Andrew Lenton ◽  
Vivian Scott ◽  
Naomi E. Vaughan ◽  
Nico Bauer ◽  
...  

Abstract. The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>


2018 ◽  
Vol 6 (2) ◽  
pp. 149-168 ◽  
Author(s):  
Sebastian Sonntag ◽  
Miriam Ferrer González ◽  
Tatiana Ilyina ◽  
Daniela Kracher ◽  
Julia E. M. S. Nabel ◽  
...  

2017 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how they may change in the future, as well as to compare different feedback formalisms. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included in complex ESMs.


Science ◽  
2020 ◽  
Vol 370 (6517) ◽  
pp. eaay3701
Author(s):  
Jessica E. Tierney ◽  
Christopher J. Poulsen ◽  
Isabel P. Montañez ◽  
Tripti Bhattacharya ◽  
Ran Feng ◽  
...  

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted.


Eos ◽  
2009 ◽  
Vol 90 (2) ◽  
pp. 15-15 ◽  
Author(s):  
Motoyoshi Ikeda ◽  
Ralf Greve ◽  
Toshika Hara ◽  
Yutaka W. Watanabe ◽  
Atsumu Ohmura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document