scholarly journals Bed topography of Princess Elizabeth Land in East Antarctica

Author(s):  
Xiangbin Cui ◽  
Hafeez Jeofry ◽  
Jamin S. Greenbaum ◽  
Jingxue Guo ◽  
Lin Li ◽  
...  

Abstract. We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica – the last remaining region in Antarctica to be surveyed by airborne radio-echo sounding (RES) techniques. The DEM covers an area of ~900,000 km2 and was established from new RES data collected by the ICECAP-2 consortium, led by the Polar Research Institute of China, from four campaigns since 2015. Previously, the region (along with Recovery basin elsewhere in East Antarctica) was characterised by an inversion using low resolution satellite gravity data across a large (>200 km wide) data-free zone to generate the Bedmap2 topographic product. We use the mass conservation (MC) method to produce an ice thickness grid across faster-flowing (>30 m yr-1) regions of the ice sheet and streamline diffusion in slower-flowing areas. The resulting ice thickness model is integrated with an ice surface model to build the bed DEM. With the revised bed DEM, we are able to model the flow of subglacial water and assess where the hydraulic pressure, and hydrological routing, is most sensitive to small ice-surface gradient changes. Together with BedMachine Antarctica, and Bedmap2, this new PEL bed DEM completes the first order measurement of subglacial continental Antarctica – an international mission that began around 70 years ago. The ice thickness and bed elevation DEMs of PEL (resolved horizontally at 500 m relative to ice surface elevations obtained from a combination of European Remote Sensing Satellite 1 radar (ERS-1) and Ice, Cloud and Land Elevation Satellite (ICESat) laser satellite altimetry datasets) are accessible from https://doi.org/10.5281/zenodo.3666088 (Cui et 38al., 2020).

2020 ◽  
Vol 12 (4) ◽  
pp. 2765-2774
Author(s):  
Xiangbin Cui ◽  
Hafeez Jeofry ◽  
Jamin S. Greenbaum ◽  
Jingxue Guo ◽  
Lin Li ◽  
...  

Abstract. We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of ∼900 000 km2 and was built from radio-echo sounding data collected during four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL's bed was characterized from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone. We use the mass conservation (MC) method to produce an ice thickness grid across faster flowing (>30 m yr−1) regions of the ice sheet and streamline diffusion in slower flowing areas. The resulting ice thickness model is integrated with an ice surface model to build the bed DEM. Together with BedMachine Antarctica and Bedmap2, this new bed DEM completes the first-order measurement of subglacial continental Antarctica – an international mission that began around 70 years ago. The ice thickness data and bed DEMs of PEL (resolved horizontally at 500 m relative to ice surface elevations obtained from the Reference Elevation Model of Antarctica – REMA) are accessible from https://doi.org/10.5281/zenodo.4023343 (Cui et al., 2020a) and https://doi.org/10.5281/zenodo.4023393 (Cui et al., 2020b).


2022 ◽  
Vol 14 (1) ◽  
pp. 241
Author(s):  
Sergey Popov

This study demonstrates the results of Russian airborne radio-echo sounding (RES) investigations and also seismic reflection soundings carried out in 1971–2020 over a vast area of coastal part of East Antarctica. It is the first comprehensive summary mapping of these data. Field research, equipment, errors of initial RES data, and methods of gridding are discussed. Ice thickness, ice base elevation, and bedrock topography are presented. The ice thickness across the research area varies from a few meters to 3620 m, and is greatest in the local subglacial depressions. The average thickness is about 1220 m. The total volume of the ice is about 710,500 km3. The bedrock heights vary from 2860 m below sea level in the ocean bathyal zone to 2040 m above sea level in the Grove Mountains area (4900 m relief). The main directions of the bedrock orographic forms are concentrated mostly in three intervals: 345∘–30∘, 45∘–70∘, and 70∘–100∘. The bottom melting rate was estimated on the basis of the simple Zotikov model. Total annual melting under the study area is about 0.633 cubic meters. The total annual melting in the study area is approximately 1.5 mm/yr.


1975 ◽  
Vol 15 (73) ◽  
pp. 137-150 ◽  
Author(s):  
David J. Drewry

AbstractThe errors involved in ice thickness determinations in Antarctica by seismic reflection shooting, gravity observations and radio-echo sounding are briefly discussed. Relative accuracies of 3%, 7-10% and 1.5% have been suggested. Double checks of ice depths from radar sounding in east Antarctica indicate an internal consistency of measurement for this technique of <1%. Comparison of carefully executed seismic shooting and routine radio-echo sounding results against absolute ice thickness values from two deep core drilling sites show no significant differences between these two remote methods (i.e. both are better than 1.5%).Over 60 comparisons are examined between radar ice thicknesses and over-snow measurements obtained on eight independent traverses in east Antarctica. Three traverses exhibit consistently unacceptable results-U.S. Victoria Land Traverse II (southern leg), Commonwealth Transanlarctic Expedition and the U.S.S.R. Vostok to South Pole Traverse—which probably result from misinterpretation of “noisy” seismograms. The remaining comparisons indicate mean differences, including some navigational uncertainty, of ≈3%, <8% and 5% between radio-echo and (1) seismic, (2) gravity, and (3) gravity tied to seismic determinations, respectively.


1979 ◽  
Vol 24 (90) ◽  
pp. 483
Author(s):  
David J. Drewry

Abstract Systematic radio echo-sounding during three seasons since 1971–72 has produced data on the configuration of the ice sheet in East Antarctica. In the sector extending inland from southern Victoria Land, the ice sheet exhibits a large ridge which drives ice towards David Glacier in the north and Mulock and Byrd Glaciers to the south. Within 100 km of the McMurdo dry-valley region soundings along ten sub-parallel lines (c. 10 km apart) provides detail on ice surface and flow patterns at the ridge tip. A small surface dome lies just inland of Taylor Glacier. The surface drops by 100 m or more before rising to join the major ridge in East Antarctica.


2006 ◽  
Vol 7 (2) ◽  
pp. 252-270 ◽  
Author(s):  
Sean Swenson ◽  
John Wahr

Abstract Currently, observations of key components of the earth's large-scale water and energy budgets are sparse or even nonexistent. One key component, precipitation minus evapotranspiration (P − ET), remains largely unmeasured due to the absence of observations of ET. Precipitation minus evapotranspiration describes the flux of water between the atmosphere and the earth's surface, and therefore provides important information regarding the interaction of the atmosphere with the land surface. In this paper, large-scale changes in continental water storage derived from satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) project are combined with river discharge data to obtain estimates of areally averaged P − ET. After constructing an equation describing the large-scale terrestrial water balance reflecting the temporal sampling of GRACE water storage estimates, GRACE-derived P − ET estimates are compared to those obtained from a reanalysis dataset [NCEP/Department of Energy (DOE) reanalysis-2] and a land surface model driven with observation-based forcing [Global Land Data Assimilation System (GLDAS)/Noah] for two large U.S. river basins. GRACE-derived P − ET compares quite favorably with the reanalysis-2 output, while P − ET from the Noah model shows significant differences. Because the uncertainties in the GRACE results can be computed rigorously, this comparison may be considered as a validation of the models. In addition to showing how GRACE P − ET estimates may be used to validate model output, the accuracy of GRACE estimates of both the seasonal cycle and the monthly averaged rate of P − ET is examined. Finally, the potential for estimating seasonal evapotranspiration is demonstrated by combining GRACE seasonal P − ET estimates with independent estimates of the seasonal cycle of precipitation.


1996 ◽  
Vol 8 (3) ◽  
pp. 281-286 ◽  
Author(s):  
M.J. Siegert ◽  
J.A. Dowdeswell ◽  
M.R. Gorman ◽  
N.F. McIntyre

An extensive analogue database of 60 MHz radio-echo sounding records of Antarctica (covering 50% of the ice sheet) is held at the Scott Polar Research Institute, University of Cambridge. This database was analysed in order to determine the presence and location of Antarctic sub-glacial lakes. In total, 77 sub-glacial lake-type records were identified, 13 more than detected in previous studies. An inventory of these sub-glacial lakes includes geographical coordinates, minimum length and overlying ice thickness for each lake. Information concerning the location of these lakes indicates that the majority (~70%) are found in the proximity of ice divides at Dome C and Ridge B within East Antarctica.


1998 ◽  
Vol 44 (146) ◽  
pp. 1-8 ◽  
Author(s):  
Martin J. Siegert ◽  
Jeffrey K. Ridley

AbstractLarge subglacial lakes manifest themselves as flat regions on the ice surface. ERS-1 satellite radar altimetry of the Dome C region of East Antarctica was analyzed to correlate unusually flat areas on the ice surface with known locations of subglacial lakes identified from airborne radio-echo sounding (RES) data. The mean length of subglacial lakes which have an expression in the ice-sheet surface was ~8.3 km, whilst those that did not exhibit a surface morphological manifestation had a mean length of ~3.3 km. Thus, lakes up to about 4 km in length arc unlikely to be detected from satellite radar altimetry of the ice surface. Given that the spacing of radio-echo flight tracks within the SPRI-NSF-TUD Antarctic database is 50-100 km in many areas, a number of subglacial lakes probably lie undetected beneath the ice sheet. RES information from two large, flat surface regions within Dome C, and a further flat area located at 80° S, 127° E, indicates the absence of subglacial lakes beneath the ice-surface features. However, these areas are characterised by relatively strong radio-echo returns which may indicate the presence of water-saturated basal sediments. We suggest that (1) blankets of water-saturated basal sediments may cause similar surface morphological features to those produced by subglacial lakes; and (2) misidentification of subglacial lakes from satellite altimeter observations of the ice-sheet surface is possible without the support of RES information relating to the ice-sheet base. Furthermore, our study indicates a lack of subglacial lake signals from RES data over relatively thick regions of East Antarctica such as the Adventure Subglacial Trough. We conclude that subglacial water produced in such regions may be transported by a basal hydrological system, driven by overburden pressure, to less thick regions of the ice sheet where subglacial lakes have been identified.


1986 ◽  
Vol 8 ◽  
pp. 11-18 ◽  
Author(s):  
Helgi Björnsson

Since 1977, large areas on western Vatnajökull have been surveyed by ground-based, radio echo-sounding and the whole ice cap, HofsjökuIl, was surveyed in 1983. Detailed maps of the glacier-surface elevation and the sub-ice bedrock have been compiled. The instrumentation includes a 2–5 MHz, mono-pulse echo-sounder, for continuous profiling, a satellite geoceiver and Loran-C equipment, for navigation, and a precision pressure altimeter. The maps of western Vatnajökull cover about 1500 km2 and are compiled from 1500 km-long sounding lines, which yielded about 50 000 data points for ice thickness and 20 000 points for ice-surface elevation. The maps of HofsjökuIl cover 923 km2, the sounding lines were 1350 km long; 42 000 points were used for determining ice thickness and 30 000 for surface elevation. The maps obtained from these data are the first ones of the ice caps with surface elevation of known accuracy. The bedrock map of western Vatnajökull shows details of volcanic ridges and subglacial valleys, running north-east to south-west, as well as the central, volcanic complexes, Hamarinn, Bárdarbunga, and Grimsvtön and the related fissure swarms. The map of Hofsjökull reveals a large volcanic complex, with a 650 m deep caldera. The landforms in southern Hofsjökull are predominantly aligned from north to south, but those in the northern ice cap run north by 25° east.


1986 ◽  
Vol 8 ◽  
pp. 51-58 ◽  
Author(s):  
J.A. Dowdeswell ◽  
D.J. Drewry ◽  
A.P.R. Cooper ◽  
M.R. Gorman ◽  
O. Liestøl ◽  
...  

Airborne geophysical investigations of the previously tittle-studied Nordaustlandet ice caps (11 150 km2) took place in 1983, using SPRI 60 MHz radio echo-sounding (RES) equipment of 160 dB system performance. RES and navigational data were recorded digitally. Navigation used a ranging system (accurate to ±30 m) from aircraft to ground-based transponders, located by satellite geoceivers, supplemented by the aircraft’s navigational instruments and timed crossings of known features. Ice surface and bedrock elevations were measured, using aircraft pressure altitude, terrain clearance, and ice thickness data. The mean error of 251 crossing points on Austfonna was 11 m. The reduced geophysical data are stored on a direct-access computer database. During 3400 km of flying, Austfonna (8105 km2) was covered by traverses a nominal 5 km apart, whereas a 15 km-spaced grid was flown over Vestfonna (2510 km2). Maps of ice surface morphology and subglacial, bedrock topography were produced for Austfonna and Vestfonna, along with an ice thickness map of Austfonna, Austfonna reaches a maximum surface elevation of 791 m and ice thickness of 583 m. 28% of the bedrock area beneath Austfonna lies below sea level. RES yielded bedrock echoes for 91% of track over Austfonna, but only 52% over Vestfonna. This was probably due to warmer conditions on Vestfonna, resulting in greater absorption and scattering of electro-magnetic energy. Ice surface elevations are a principal data source in the revision of official Norwegian maps of Nordaustlandet.


1979 ◽  
Vol 24 (90) ◽  
pp. 483-483
Author(s):  
David J. Drewry

AbstractSystematic radio echo-sounding during three seasons since 1971–72 has produced data on the configuration of the ice sheet in East Antarctica. In the sector extending inland from southern Victoria Land, the ice sheet exhibits a large ridge which drives ice towards David Glacier in the north and Mulock and Byrd Glaciers to the south. Within 100 km of the McMurdo dry-valley region soundings along ten sub-parallel lines (c. 10 km apart) provides detail on ice surface and flow patterns at the ridge tip. A small surface dome lies just inland of Taylor Glacier. The surface drops by 100 m or more before rising to join the major ridge in East Antarctica.


Sign in / Sign up

Export Citation Format

Share Document