scholarly journals Use of various remote sensing land cover products for plant functional type mapping over Siberia

2013 ◽  
Vol 5 (2) ◽  
pp. 331-348 ◽  
Author(s):  
C. Ottlé ◽  
J. Lescure ◽  
F. Maignan ◽  
B. Poulter ◽  
T. Wang ◽  
...  

Abstract. High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics. The new PFT map at 5 km scale is available for download from the PANGAEA website at 10.1594/PANGAEA.810709.

2013 ◽  
Vol 6 (1) ◽  
pp. 255-296
Author(s):  
C. Ottlé ◽  
J. Lescure ◽  
F. Maignan ◽  
B. Poulter ◽  
T. Wang ◽  
...  

Abstract. High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover datasets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing earth system models. Earth system models also require specific land cover classification systems based on plant functional types, rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover datasets against one another and with auxiliary data to identify key uncertainties that contribute to variability in Plant Functional Type (PFT) classifications that would introduce errors in earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, continuous vegetation fields (MODIS-VCF) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover dataset, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFTs maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT dataset, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground-truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to better represent the water and carbon cycles in northern latitudes. Updated land cover datasets are critical for improving and maintaining the relevance of earth system models for assessing climate and human impacts on biogeochemistry and biophysics. The new PFT map at 5 km scale is available for download from the PANGAEA website, at: doi:10.1594/PANGAEA.810709.


2015 ◽  
Vol 8 (7) ◽  
pp. 2315-2328 ◽  
Author(s):  
B. Poulter ◽  
N. MacBean ◽  
A. Hartley ◽  
I. Khlystova ◽  
O. Arino ◽  
...  

Abstract. Global land cover is a key variable in the earth system with feedbacks on climate, biodiversity and natural resources. However, global land cover data sets presently fall short of user needs in providing detailed spatial and thematic information that is consistently mapped over time and easily transferable to the requirements of earth system models. In 2009, the European Space Agency launched the Climate Change Initiative (CCI), with land cover (LC_CCI) as 1 of 13 essential climate variables targeted for research development. The LC_CCI was implemented in three phases: first responding to a survey of user needs; developing a global, moderate-resolution land cover data set for three time periods, or epochs (2000, 2005, and 2010); and the last phase resulting in a user tool for converting land cover to plant functional type equivalents. Here we present the results of the LC_CCI project with a focus on the mapping approach used to convert the United Nations Land Cover Classification System to plant functional types (PFTs). The translation was performed as part of consultative process among map producers and users, and resulted in an open-source conversion tool. A comparison with existing PFT maps used by three earth system modeling teams shows significant differences between the LC_CCI PFT data set and those currently used in earth system models with likely consequences for modeling terrestrial biogeochemistry and land–atmosphere interactions. The main difference between the new LC_CCI product and PFT data sets used currently by three different dynamic global vegetation modeling teams is a reduction in high-latitude grassland cover, a reduction in tropical tree cover and an expansion in temperate forest cover in Europe. The LC_CCI tool is flexible for users to modify land cover to PFT conversions and will evolve as phase 2 of the European Space Agency CCI program continues.


2021 ◽  
Vol 13 (6) ◽  
pp. 3070
Author(s):  
Patrycja Szarek-Iwaniuk

Urbanization processes are some of the key drivers of spatial changes which shape and influence land use and land cover. The aim of sustainable land use policies is to preserve and manage existing resources for present and future generations. Increasing access to information about land use and land cover has led to the emergence of new sources of data and various classification systems for evaluating land use and spatial changes. A single globally recognized land use classification system has not been developed to date, and various sources of land-use/land-cover data exist around the world. As a result, data from different systems may be difficult to interpret and evaluate in comparative analyses. The aims of this study were to compare land-use/land-cover data and selected land use classification systems, and to determine the influence of selected classification systems and spatial datasets on analyses of land-use structure in the examined area. The results of the study provide information about the existing land-use/land-cover databases, revealing that spatial databases and land use and land cover classification systems contain many equivalent land-use types, but also differ in various respects, such as the level of detail, data validity, availability, number of land-use types, and the applied nomenclature.


2018 ◽  
Vol 54 (12) ◽  
Author(s):  
Wondmagegn Yigzaw ◽  
Hong‐Yi Li ◽  
Yonas Demissie ◽  
Mohamad I. Hejazi ◽  
L. Ruby Leung ◽  
...  

2011 ◽  
Vol 4 (3) ◽  
pp. 2081-2121 ◽  
Author(s):  
B. Poulter ◽  
P. Ciais ◽  
E. Hodson ◽  
H. Lischke ◽  
F. Maignan ◽  
...  

Abstract. The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.


2020 ◽  
Author(s):  
Mingyue Zhang ◽  
Jürgen Helmert ◽  
Merja Tölle

<p>According to IPCC, Land use and Land Cover (LC) changes have a key role to adapt and mitigate future climate change aiming to stabilize temperature rise up to 2°C. Land surface change at regional scale is associated to global climate change, such as global warming. It influences the earth’s water and energy cycles via influences on the heat, moisture and momentum transfer, and on the chemical composition of the atmosphere. These effects show variations due to different LC types, and due to their spatial and temporal resolutions.  Thus, we incorporate a new time-varying land cover data set based on ESACCI into the regional climate model COSMO-CLM(v5.0). Further, the impact on the regional and local climate is compared to the standard operational LC data of GLC2000 and GlobCover 2009. Convection-permitting simulations with the three land cover data sets are performed at 0.0275° horizontal resolution over Europe for the time period from 1992 to 2015.</p><p>Overall, the simulation results show comparable agreement to observations. However, the simulation results based on GLC2000 and GlobCover 2009 (with 23 LC types) LC data sets show a fluctuation of 0.5K in temperature and 5% of precipitation. Even though the LC is classified into the same types, the difference in LC distribution and fraction leads to variations in climate simulation results. Using all of the 37 LC types of the ESACCI-LC data set show noticeable differences in distribution of temperature and precipitation compared to the simulations with GLC2000 and GlobCover 2009. Especially in forest areas, slight differences of the plant cover type (e.g. Evergreen or Deciduous) could result in up to 10% differences (increase or decrease) in temperature and precipitation over the simulation domain. Our results demonstrate how LC changes as well as different land cover type effect regional climate. There is need for proper and time-varying land cover data sets for regional climate model studies. The approach of including ESACCI-LC data set into regional climate model simulations also improved the external data generation system.</p><p>We anticipate this research to be a starting point for involving time-varying LC data sets into regional climate models. Furthermore, it will give us a possibility to quantify the effect of time-varying LC data on regional climate accurately.</p><p><strong>Acknowledgement</strong>:</p><p>1: Computational resources were made available by the German Climate Computing Center (DKRZ) through support from the Federal Ministry of Education and Research in Germany (BMBF). We acknowledge the funding of the German Research Foundation (DFG) through grant NR. 401857120.</p><p>2: Appreciation for the support of Jürg Luterbacher and Eva Nowatzki.</p><p> </p>


2021 ◽  
Author(s):  
Hui Yang ◽  
Songnian Li ◽  
Jun Chen ◽  
Xiaolu Zhang ◽  
Shishuo Xu

A number of national, regional and global land cover classification systems have been developed to meet specific user requirements for land cover mapping exercises, independent of scale, nomenclature and quality. However, this variety of land-cover classification systems limits the compatibility and comparability of land cover data. Furthermore, the current lack of interoperability between different land cover datasets, often stemming from incompatible land cover classification systems, makes analysis of multi-source, heterogeneous land cover data for various applications a very difficult task. This paper provides a critical review of the harmonization of land cover classification systems, which facilitates the generation, use and analysis of land cover maps consistently. Harmonization of existing land cover classification systems is essential to improve their cross-comparison and validation for understanding landscape patterns and changes. The paper reviews major land cover classification standards according to different scales, summarizes studies on harmonizing land cover mapping, and discusses some research problems that need to be solved and some future research directions. Keywords: land cover; classification system; standard; harmonization


2021 ◽  
Author(s):  
Hui Yang ◽  
Songnian Li ◽  
Jun Chen ◽  
Xiaolu Zhang ◽  
Shishuo Xu

A number of national, regional and global land cover classification systems have been developed to meet specific user requirements for land cover mapping exercises, independent of scale, nomenclature and quality. However, this variety of land-cover classification systems limits the compatibility and comparability of land cover data. Furthermore, the current lack of interoperability between different land cover datasets, often stemming from incompatible land cover classification systems, makes analysis of multi-source, heterogeneous land cover data for various applications a very difficult task. This paper provides a critical review of the harmonization of land cover classification systems, which facilitates the generation, use and analysis of land cover maps consistently. Harmonization of existing land cover classification systems is essential to improve their cross-comparison and validation for understanding landscape patterns and changes. The paper reviews major land cover classification standards according to different scales, summarizes studies on harmonizing land cover mapping, and discusses some research problems that need to be solved and some future research directions. Keywords: land cover; classification system; standard; harmonization


Author(s):  
Djan'na H. Koubodana ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Julien Adounkpe ◽  
Kossi Atchonouglo

The results reveal CILSS as the most accurate data set with a Kappa coefficient of 68% and an overall accuracy of 83%. CILSS data shows a decrease of savanna and forest whereas an increase of cropland over the period 1975 to 2013. The increase of cropland area of 30.97% from 1975 to 2013 can be related to the increase in population and their food demand, while the losses of forest area and the decrease of savanna are further amplified by using wood as energy sources and the lack of forest management. The three datasets were used to simulate future LULC changes using the Terrset Land Change Modeler. The validation of the model using CILSS data for 2013 showed a quality of 50.94%, it is only 40.04% for ESA and 20.13% for Globeland30. CILSS data was utilized to simulate the LULC distribution for the years 2020 and 2027 because of its satisfactory performances. The results show that a high spatial resolution is not a guarantee of high quality. The results of this study can be used for impact studies and to develop management strategies for mitigating negative effects of land use and land cover change.


Sign in / Sign up

Export Citation Format

Share Document