scholarly journals High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet

2014 ◽  
Vol 6 (2) ◽  
pp. 331-338 ◽  
Author(s):  
K. Lindbäck ◽  
R. Pettersson ◽  
S. H. Doyle ◽  
C. Helanow ◽  
P. Jansson ◽  
...  

Abstract. We present ice thickness and bed topography maps with a high spatial resolution (250–500 m) of a land-terminating section of the Greenland Ice Sheet derived from ground-based and airborne radar surveys. The data have a total area of ~12 000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of Isunnguata Sermia Glacier is overdeepened and reaches an elevation of ~500 m below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The compiled data sets of ground-based and airborne radar surveys cover one of the most studied regions of the Greenland Ice Sheet and can be valuable for detailed studies of ice sheet dynamics and hydrology. The combined data set is freely available at doi:10.1594/pangaea.830314.

2014 ◽  
Vol 7 (1) ◽  
pp. 129-148 ◽  
Author(s):  
K. Lindbäck ◽  
R. Pettersson ◽  
S. H. Doyle ◽  
C. Helanow ◽  
P. Jansson ◽  
...  

Abstract. We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of the Isunnguata Sermia Glacier is over-deepened and reaches an elevation of several hundreds of meters below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The covered area is one of the most studied regions of the Greenland Ice Sheet with studies of mass balance, dynamics, and supraglacial lakes, and our combined dataset can be valuable for detailed studies of ice sheet dynamics and hydrology. The compiled datasets of ground-based and airborne radar surveys are accessible for reviewers (password protected) at doi.pangaea.de/10.1594/pangaea.830314 and will be freely available in the final revised paper.


2017 ◽  
Vol 9 (1) ◽  
pp. 115-131 ◽  
Author(s):  
Jacqueline Huber ◽  
Alison J. Cook ◽  
Frank Paul ◽  
Michael Zemp

Abstract. The glaciers on the Antarctic Peninsula (AP) potentially make a large contribution to sea level rise. However, this contribution has been difficult to estimate since no complete glacier inventory (outlines, attributes, separation from the ice sheet) is available. This work fills the gap and presents a new glacier inventory of the AP north of 70° S, based on digitally combining preexisting data sets with geographic information system (GIS) techniques. Rock outcrops have been removed from the glacier basin outlines of Cook et al. (2014) by intersection with the latest layer of the Antarctic Digital Database (Burton-Johnson et al., 2016). Glacier-specific topographic parameters (e.g., mean elevation, slope and aspect) as well as hypsometry have been calculated from the DEM of Cook et al. (2012). We also assigned connectivity levels to all glaciers following the concept by Rastner et al. (2012). Moreover, the bedrock data set of Huss and Farinotti (2014) enabled us to add ice thickness and volume for each glacier. The new inventory is available from the Global Land Ice Measurements from Space (GLIMS) database (doi:10.7265/N5V98602) and consists of 1589 glaciers covering an area of 95 273 km2, slightly more than the 89 720 km2 covered by glaciers surrounding the Greenland Ice Sheet. Hence, compared to the preexisting data set of Cook et al. (2014), this data set covers a smaller area and one glacier less due to the intersection with the rock outcrop data set. The total estimated ice volume is 34 590 km3, of which one-third is below sea level. The hypsometric curve has a bimodal shape due to the unique topography of the AP, which consists mainly of ice caps with outlet glaciers. Most of the glacierized area is located at 200–500 m a.s.l., with a secondary maximum at 1500–1900 m. Approximately 63 % of the area is drained by marine-terminating glaciers, and ice-shelf tributary glaciers cover 35 % of the area. This combination indicates a high sensitivity of the glaciers to climate change for several reasons: (1) only slightly rising equilibrium-line altitudes would expose huge additional areas to ablation, (2) rising ocean temperatures increase melting of marine terminating glaciers, and (3) ice shelves have a buttressing effect on their feeding glaciers and their collapse would alter glacier dynamics and strongly enhance ice loss (Rott et al., 2011). The new inventory should facilitate modeling of the related effects using approaches tailored to glaciers for a more accurate determination of their future evolution and contribution to sea level rise.


2013 ◽  
Vol 54 (63) ◽  
pp. 209-220 ◽  
Author(s):  
Ralf Greve ◽  
Ute C. Herzfeld

AbstractThe dynamic/thermodynamic shallow-ice model SICOPOLIS is applied to the Greenland ice sheet. Paleoclimatic spin-ups from 125 ka BP until today, as well as future-climate experiments 500 years into the future, are carried out with three different grid spacings, namely 20, 10 and 5 km. The scenarios are a subset of those specified by the SeaRISE (Sea-level Response to Ice Sheet Evolution) community effort. The bed topography includes improved troughs for Jakobshavn Isbræ, Helheim, Kangerdlugssuaq and Petermann glaciers, processed by an algorithm that preserves shape, orientation and continuity of the troughs on the 5 km scale. Comparison of simulated and observed present-day surface velocities shows that these ice streams and outlet glaciers are resolved with different accuracies, ranging from poor (20 km grid) to reasonably good (5 km grid). In the future-climate experiments, the simulated absolute ice volumes depend significantly on the resolution, while the sensitivities (ice volumes relative to the constant-climate control run) vary only by a few centimeters of sea-level equivalent.


1996 ◽  
Vol 23 ◽  
pp. 181-186 ◽  
Author(s):  
R. S. W. van de Wal ◽  
S. Ekholm

In this paper the elevation model for the Greenland ice sheet based upon radio-echo-sounding flights of the Technical University of Denmark (TUD) (Letréguilly and others, 1991) are compared with the satellite-altimetry model (Tscherning and others, 1993) improved with airborne-laser and radar altimetry (IA model). Although the general hypsometry of both data sets is rather similar, differences seem to be large at individual points along the ice margin. Over the entire ice sheet, the difference between the IA model and the TUD model is 33 m with a root-mean-square error of 112 m. Differential GPS measurements collected in the ice-marginal zone near Søndre Strømfjord show that the IA model is more accurate than the TUD model. The latter data set underestimates the elevation by approximately 150 m in the ice-marginal zone near Søndre Strømfjord.Calculation of the ablation with an energy-balance model and with a degree-day model points to a 20% decrease in the ablation if the IA model is used. Not only does this show the sensitivity of ablation calculations to the orographic input but it also indicates that the ablation calculated by the models used nowadays is relatively overestimated.


2020 ◽  
Author(s):  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz ◽  
Florian Andreas Ziemen ◽  
Christian B. Rodehacke ◽  
Clemens Schannwell

Abstract. Most studies analyzing changes in the surface mass balance (SMB) of the Greenland ice sheet are limited to the last century, due to the availability of observations and the computational limitations of regional climate modeling. Using transient simulations with a comprehensive Earth System Model (ESM) we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for deglacial climate conditions. An energy balance model (EBM) is used to downscale atmospheric processes. It determines the SMB on higher spatial resolution and allows to resolve SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation changes in insolation dominate the Greenland SMB: 1) The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation, as a warmer atmosphere precipitates more. After 13 ka before present (BP) melt begins to dominate and the SMB decreases. 2) The decline in insolation after 9 ka BP leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are episodes of significant SMB/ELA decreases, related to slowdowns of the Atlantic Meridional Overturning Circulation (AMOC) that lead to cooling over most of the Northern Hemisphere. To study associated changes in the ice sheet geometry, the SMB data set is made available to the ice sheet modeling community.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1569
Author(s):  
Chao Yue ◽  
Liyun Zhao ◽  
Michael Wolovick ◽  
John C. Moore

Surface runoff from the Greenland ice sheet (GrIS) has dominated recent ice mass loss and is having significant impacts on sea-level rise under global warming. Here, we used two modified degree-day (DD) methods to estimate the runoff of the GrIS during 1950–2200 under the extensions of historical, RCP 4.5, and RCP 8.5 scenarios. Near-surface air temperature and snowfall were obtained from five Earth System Models. We applied new degree-day factors to best match the results of the surface energy and mass balance model, SEMIC, over the whole GrIS in a 21st century simulation. The relative misfits between tuned DD methods and SEMIC during 2050–2089 were 3% (RCP4.5) and 12% (RCP8.5), much smaller than the 30% difference between untuned DD methods and SEMIC. Equilibrium line altitude evolution, runoff-elevation feedback, and ice mask evolution were considered in the future simulations to 2200. The ensemble mean cumulative runoff increasing over the GrIS was equivalent to sea-level rises of 6 ± 2 cm (RCP4.5) and 9 ± 3 cm (RCP8.5) by 2100 relative to the period 1950–2005, and 13 ± 4 cm (RCP4.5) and 40 ± 5 cm (RCP8.5) by 2200. Runoff-elevation feedback produced runoff increases of 5 ± 2% (RCP4.5) and 6 ± 2% (RCP8.5) by 2100, and 12 ± 4% (RCP4.5) and 15 ± 5% (RCP8.5) by 2200. Two sensitivity experiments showed that increases of 150% or 200%, relative to the annual mean amount of snowfall in 2080–2100, in the post-2100 period would lead to 10% or 20% more runoff under RCP4.5 and 5% or 10% under RCP8.5 because faster ice margin retreat and ice sheet loss under RCP8.5 dominate snowfall increases and ice elevation feedbacks.


2019 ◽  
Vol 11 (2) ◽  
pp. 769-786 ◽  
Author(s):  
Kenneth D. Mankoff ◽  
William Colgan ◽  
Anne Solgaard ◽  
Nanna B. Karlsson ◽  
Andreas P. Ahlstrøm ◽  
...  

Abstract. We present a 1986 through 2017 estimate of Greenland Ice Sheet ice discharge. Our data include all discharging ice that flows faster than 100 m yr−1 and are generated through an automatic and adaptable method, as opposed to conventional hand-picked gates. We position gates near the present-year termini and estimate problematic bed topography (ice thickness) values where necessary. In addition to using annual time-varying ice thickness, our time series uses velocity maps that begin with sparse spatial and temporal coverage and end with near-complete spatial coverage and 6 d updates to velocity. The 2010 through 2017 average ice discharge through the flux gates is ∼488±49 Gt yr−1. The 10 % uncertainty stems primarily from uncertain ice bed location (ice thickness). We attribute the ∼50 Gt yr−1 differences among our results and previous studies to our use of updated bed topography from BedMachine v3. Discharge is approximately steady from 1986 to 2000, increases sharply from 2000 to 2005, and then is approximately steady again. However, regional and glacier variability is more pronounced, with recent decreases at most major glaciers and in all but one region offset by increases in the NW (northwestern) region. As part of the journal's living archive option, all input data, code, and results from this study will be updated when new input data are accessible and made freely available at https://doi.org/10.22008/promice/data/ice_discharge.


Sign in / Sign up

Export Citation Format

Share Document