scholarly journals Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974–2009

2013 ◽  
Vol 6 (1) ◽  
pp. 223-254 ◽  
Author(s):  
K. E. Giesbrecht ◽  
L. A. Miller ◽  
S. Zimmermann ◽  
E. Carmack ◽  
W. K. Johnson ◽  
...  

Abstract. We have assembled and conducted primary quality control on previously publically-unavailable water column measurements of the dissolved inorganic carbon system and associated biogeochemical parameters (oxygen, nutrients, etc.) made on 25 cruises in the subarctic and Arctic regions dating from as far back as 1974. The measurements are primarily from the western side of the Canadian Arctic, but also include data ranging from the North Pacific to the Gulf of St. Lawrence. The data were subjected to primary quality control (QC) to identify outliers and obvious errors. This dataset incorporates over four thousand individual measurements of total inorganic carbon (TIC), alkalinity, and pH from the Canadian Arctic over a period of more than 30 yr and provides an opportunity to increase our understanding of temporal changes in the inorganic carbon system in northern waters and the Arctic Ocean. The dataset is available for download on the CDIAC website: http://cdiac.ornl.gov/ftp/oceans/IOS_Arctic_Database/ (doi:10.3334/CDIAC/OTG.IOS_ARCT_CARBN).

2014 ◽  
Vol 6 (1) ◽  
pp. 91-104 ◽  
Author(s):  
K. E. Giesbrecht ◽  
L. A. Miller ◽  
M. Davelaar ◽  
S. Zimmermann ◽  
E. Carmack ◽  
...  

Abstract. We have assembled and conducted primary quality control on previously publicly unavailable water column measurements of the dissolved inorganic carbon system and associated biogeochemical parameters (oxygen, nutrients, etc.) made on 26 cruises in the subarctic and Arctic regions dating back to 1974. The measurements are primarily from the western side of the Canadian Arctic, but also include data that cover an area ranging from the North Pacific to the Gulf of St. Lawrence. The data were subjected to primary quality control (QC) to identify outliers and obvious errors. This data set incorporates over four thousand individual measurements of total inorganic carbon (TIC), alkalinity, and pH from the Canadian Arctic over a period of more than 30 years and provides an opportunity to increase our understanding of temporal changes in the inorganic carbon system in northern waters and the Arctic Ocean. The data set is available for download on the CDIAC (Carbon Dioxide Information Analysis Center) website: http://cdiac.ornl.gov/ftp/oceans/IOS_Arctic_Database/ (doi:10.3334/CDIAC/OTG.IOS_ARCT_CARBN).


2010 ◽  
Vol 2 (1) ◽  
pp. 71-78 ◽  
Author(s):  
S. Jutterström ◽  
L. G. Anderson ◽  
N. R. Bates ◽  
R. Bellerby ◽  
T. Johannessen ◽  
...  

Abstract. The paper describes the steps taken for quality controlling chosen parameters within the Arctic Ocean data included in the CARINA data set and checking for offsets between the individual cruises. The evaluated parameters are the inorganic carbon parameters (total dissolved inorganic carbon, total alkalinity and pH), oxygen and nutrients: nitrate, phosphate and silicate. More parameters can be found in the CARINA data product, but were not subject to a secondary quality control. The main method in determining offsets between cruises was regional multi-linear regression, after a first rough basin-wide deep-water estimate of each parameter. Lastly, the results of the secondary quality control are discussed as well as applied adjustments.


2009 ◽  
Vol 1 (1) ◽  
pp. 35-43 ◽  
Author(s):  
A. Olsen

Abstract. Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas includes the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution presents an account of the quality control of the total dissolved inorganic carbon (TCO2) data from the Nordic Seas in CARINA. Out of the 35 cruises from the Nordic Seas included in CARINA, 25 had TCO2 data. The data from 7 of these were found to be of low quality and should not be used, thus the final CARINA data product contains TCO2 data from 18 cruises from the Nordic Seas. These data appear consistent to at least 4 μmol kg−1.


2019 ◽  
Vol 11 (3) ◽  
pp. 1437-1461 ◽  
Author(s):  
Are Olsen ◽  
Nico Lange ◽  
Robert M. Key ◽  
Toste Tanhua ◽  
Marta Álvarez ◽  
...  

Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previous version, extending its coverage in time from 2013 to 2017, while also adding some data from prior years. GLODAPv2.2019 includes measurements from more than 1.1 million water samples from the global oceans collected on 840 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 116 new cruises with the data from the 724 quality-controlled cruises of the GLODAPv2 data product. They correct for errors related to measurement, calibration, and data handling practices, taking into account any known or likely time trends or variations. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH, and 5 % in the halogenated transient tracers. The compilation also includes data for several other variables, such as isotopic tracers. These were not subjected to bias comparison or adjustments. The original data, their documentation and DOI codes are available in the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/, last access: 17 September 2019). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/xnme-wr20 (Olsen et al., 2019). The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2.2019 methods and provides a broad overview of the secondary quality control procedures and results.


2021 ◽  
Vol 13 (12) ◽  
pp. 5565-5589
Author(s):  
Siv K. Lauvset ◽  
Nico Lange ◽  
Toste Tanhua ◽  
Henry C. Bittig ◽  
Are Olsen ◽  
...  

Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2021 is an update of the previous version, GLODAPv2.2020 (Olsen et al., 2020). The major changes are as follows: data from 43 new cruises were added, data coverage was extended until 2020, all data with missing temperatures were removed, and a digital object identifier (DOI) was included for each cruise in the product files. In addition, a number of minor corrections to GLODAPv2.2020 data were performed. GLODAPv2.2021 includes measurements from more than 1.3 million water samples from the global oceans collected on 989 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For this annual update, adjustments for the 43 new cruises were derived by comparing those data with the data from the 946 quality controlled cruises in the GLODAPv2.2020 data product using crossover analysis. Comparisons to estimates of nutrients and ocean CO2 chemistry based on empirical algorithms provided additional context for adjustment decisions in this version. The adjustments are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent with to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/GLODAPv2_2021/, last access: 7 July 2021). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/ttgq-n825 (Lauvset et al., 2021). These bias-adjusted product files also include significant ancillary and approximated data and can be accessed via https://www.glodap.info (last access: 29 June 2021). These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2021 methods and provides a broad overview of the secondary quality control procedures and results.


2016 ◽  
Author(s):  
Meike Becker ◽  
Nils Andersen ◽  
Helmut Erlenkeuser ◽  
Matthew. P. Humphreys ◽  
Toste Tanhua ◽  
...  

Abstract. The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the carbon system. For example, knowing the δ13C-DIC signature of the inorganic carbon pool can help to describe the exchange between ocean and atmosphere as well as the amount of anthropogenic carbon in the water column. The measurements can also be used for evaluating modeled carbon fluxes, for making basin wide estimates, studying seasonal and interannual variability or decadal trends in interior ocean biogeochemistry. For all these purposes, it is not only important to have a sufficient amount of data, but these data must also be internally consistent and of high quality. In this study, we present a δ13C-DIC dataset for the North Atlantic, which has undergone secondary quality control. The data originate from oceanographic research cruises between 1981 and 2012. During a primary quality control step based on simple range tests obviously bad data were flagged. In a second quality control step, biases between measurements from different cruises were quantified through a crossover analysis using nearby data of the respective cruises and absolute values of biased cruises were adjusted in the data product. the crossover analysis was possible for 22 of the 29 cruises in our dataset and adjustments were applied to 10 of these. The internal accuracy of this dataset is 0.017 ‰. The dataset is available via CDIAC at http://cdiac.ornl.gov/oceans/ndp_096/NAC13v1.html, doi:10.3334/CDIAC/OTG.NAC13v1.


2009 ◽  
Vol 2 (1) ◽  
pp. 281-308 ◽  
Author(s):  
S. Jutterström ◽  
L. G. Anderson ◽  
N. R. Bates ◽  
R. Bellerby ◽  
T. Johannessen ◽  
...  

Abstract. The paper describes the steps taken for quality controlling chosen parameters within the Arctic Ocean data included in the CARINA data set and checking for offsets between the individual cruises. The evaluated parameters are the inorganic carbon parameters (total dissolved inorganic carbon, total alkalinity and pH), oxygen and nutrients: nitrate, phosphate and silicate. More parameters can be found in the CARINA data product, but were not subject to a secondary quality control. The main method in determining offsets between cruises was regional multi-linear regression, after a first rough basin-wide deep-water estimate of each parameter. Lastly, the results of the secondary quality control are discussed as well as suggested adjustments.


2016 ◽  
Vol 8 (2) ◽  
pp. 297-323 ◽  
Author(s):  
Are Olsen ◽  
Robert M. Key ◽  
Steven van Heuven ◽  
Siv K. Lauvset ◽  
Anton Velo ◽  
...  

Abstract. Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 6 µmol kg−1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.The original data and their documentation and doi codes are available at the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/GLODAPv2/). This site also provides access to the calibrated data product, which is provided as a single global file or four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under the doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2. The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2 methods and products and includes a broad overview of the secondary quality control results. The magnitude of and reasoning behind each adjustment is available on a per-cruise and per-variable basis in the online Adjustment Table.


2016 ◽  
Vol 8 (2) ◽  
pp. 559-570 ◽  
Author(s):  
Meike Becker ◽  
Nils Andersen ◽  
Helmut Erlenkeuser ◽  
Matthew P. Humphreys ◽  
Toste Tanhua ◽  
...  

Abstract. The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the carbon system. For example, knowing the δ13C signature of the inorganic carbon pool can help in describing the amount of anthropogenic carbon in the water column. The measurements can also be used for evaluating modeled carbon fluxes, for making basin-wide estimates of anthropogenic carbon, and for studying seasonal and interannual variability or decadal trends in interior ocean biogeochemistry. For all these purposes, it is not only important to have a sufficient amount of data, but these data must also be internally consistent and of high quality. In this study, we present a δ13C-DIC dataset for the North Atlantic which has undergone secondary quality control. The data originate from oceanographic research cruises between 1981 and 2014. During a primary quality control step based on simple range tests, obviously bad data were flagged. In a second quality control step, biases between measurements from different cruises were quantified through a crossover analysis using nearby data of the respective cruises, and values of biased cruises were adjusted in the data product. The crossover analysis was possible for 24 of the 32 cruises in our dataset, and adjustments were applied to 11 cruises. The internal accuracy of this dataset is 0.017 ‰. The dataset is available via the Carbon Dioxide Information Analysis Center (CDIAC) at http://cdiac.ornl.gov/oceans/ndp_096/NAC13v1.html, doi:10.3334/CDIAC/OTG.NAC13v1.


2020 ◽  
Author(s):  
Are Olsen ◽  
Nico Lange ◽  
Robert M. Key ◽  
Toste Tanhua ◽  
Henry C. Bittig ◽  
...  

Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are: data from 106 more cruises added, extension of time coverage until 2019, and the inclusion of available discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product. They correct for errors related to measurement, calibration, and data handling practices, while taking into account any known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg−1 in dissolved inorganic carbon, 4 μmol kg−1 in total alkalinity, 0.01–0.02, depending on region, in pH, and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2 were not subjected to bias comparison or adjustments. The original data, their documentation and doi codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, last access: 22 June 2020). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). The bias corrected product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2020 methods and provides a broad overview of the secondary quality control procedures and results.


Sign in / Sign up

Export Citation Format

Share Document