scholarly journals Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands

2017 ◽  
Author(s):  
Jean Braun ◽  
Lorenzo Gemignani ◽  
Peter van der Beek

Abstract. The purpose of detrital thermochronology is to provide constraints on regional scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected in a system of river catchments, allows to extract information about the relative distribution of erosion rates in an eroding hinterland without relying on a steady-state assumption or the value of thermal parameters. The model is based on a relatively low number of parameters describing lithological variability among the various catchments and their sizes, and only uses the raw binned ages. In order to illustrate the method, we invert age distributions collected in the Eastern Himalaya, one of the most tectonically active places on Earth. From the inversion of the cooling age distributions we predict present day erosion rates of the catchments along the Siang-Tsangpo-Brahmaputra river system, as well as smaller tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i.e. from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The inversion additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in R.code within a Jupyter Notebook that includes the data used in this paper for illustration purposes.

2018 ◽  
Vol 6 (1) ◽  
pp. 257-270 ◽  
Author(s):  
Jean Braun ◽  
Lorenzo Gemignani ◽  
Peter van der Beek

Abstract. One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo–Siang–Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo–Siang–Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i.e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes.


2020 ◽  
Author(s):  
Sebastian G. Wolf ◽  
Ritske S. Huismans ◽  
Jean Braun ◽  
Xiaoping Yuan

<p>It has been a long-standing problem how mountain belts gain and loose topography during their tectonically active growth and inactive decay phase. It is widely recognized that mountain belt topography is generated by crustal shortening, and lowered by river bedrock erosion, linking climate to tectonics. However, it remains enigmatic how to reconcile high erosion rates in active orogens as observed in Taiwan or New Zealand, with long term survival of topography for 100s of Myrs as observed for example in the Uralides and Appalachians. Here we use for the first time a tight coupling between a landscape evolution model (FastScape) with an upper mantle scale tectonic (thermo-mechanical) model to investigate the different stages of mountain belt growth and decay. Using two end-member models, we demonstrate that growing orogens with high erosive power remain small (<200 km), reach steady state between tectonic in- and erosional material eff-flux, and are characterized by transverse valleys. Contrarily, mountain belts with medium to low erosive power will not reach growth steady state, grow wide, and are characterized by longitudinal rivers deflected by active thrusting. However, during growth both types of orogens reach the same height, controlled by rheology and independent of surface process efficiency. Erosional efficiency controls orogenic decay, which is counteracted by regional isostatic rebound. Rheological control of mountain height implies that there is a natural upper limit for the steepness index of rivers on Earth. To compare model results to various natural examples, we quantify the degree of longitudinal flow of modeled rivers with river “longitudinality” in several active or recently active orogens on Earth. Application of the river “longitudinality index” gives information whether (parts of) an orogen is or was at steady state during orogenic growth.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2535
Author(s):  
Veronica Guerra ◽  
Maurizio Lazzari

Studying fluvial dynamics and environments, GIS-based analyses are of fundamental importance to evaluate the network geometry and possible anomalies, and can be particularly useful to estimate modifications in processes and erosion rates. The aim of this paper is to estimate short-term erosion rates attributable to fluvial processes in two sample catchment sub-basins of the Marecchia river valley, by conducting quantitative morphometric analyses in order to calculate various descriptive parameters of the hierarchisation of the river networks and the mean turbid transport of streams (Tu). Sediment yield transported by streams can in fact partially express the amount of erosional processes acting within the drainage basin. The study area includes two sub-basins of the Marecchia valley (Senatello river, 49 km2 and Mazzocco river, 47 km2), chosen because of their similar extent and of the different location in the major catchment basin. Starting from geomorphological maps of the two river basins, the Tu parameter has been calculated and converted in short-term rate (average value 0.21 mm/year). Moreover, the comparison of these short-term mean data with the uplift rates calculated on a regional scale (0.41 ± 0.26 mm/year) in the Marecchia valley confirms that the northern Apennines may represent a non-steady state system.


2014 ◽  
Vol 7 (5) ◽  
pp. 1901-1918 ◽  
Author(s):  
J. Ray ◽  
V. Yadav ◽  
A. M. Michalak ◽  
B. van Bloemen Waanders ◽  
S. A. McKenna

Abstract. The characterization of fossil-fuel CO2 (ffCO2) emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based) spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas) yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP), is used to identify the wavelet coefficients. We find that (i) the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii) that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii) that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Lin ◽  
Ming Pan ◽  
Eric F. Wood ◽  
Dai Yamazaki ◽  
George H. Allen

AbstractSpatial variability of river network drainage density (Dd) is a key feature of river systems, yet few existing global hydrography datasets have properly accounted for it. Here, we present a new vector-based global hydrography that reasonably estimates the spatial variability of Dd worldwide. It is built by delineating channels from the latest 90-m Multi-Error-Removed Improved Terrain (MERIT) digital elevation model and flow direction/accumulation. A machine learning approach is developed to estimate Dd based on the global watershed-level climatic, topographic, hydrologic, and geologic conditions, where relationships between hydroclimate factors and Dd are trained using the high-quality National Hydrography Dataset Plus (NHDPlusV2) data. By benchmarking our dataset against HydroSHEDS and several regional hydrography datasets, we show the new river flowlines are in much better agreement with Landsat-derived centerlines, and improved Dd patterns of river networks (totaling ~75 million kilometers in length) are obtained. Basins and estimates of intermittent stream fraction are also delineated to support water resources management. This new dataset (MERIT Hydro–Vector) should enable full global modeling of river system processes at fine spatial resolutions.


2021 ◽  
Author(s):  
Hamed Khorasani ◽  
Zhenduo Zhu

<p>Phosphorus (P) is the key and limiting nutrient in the eutrophication of freshwater resources. Modeling P retention in lakes using steady-state mass balance models (i.e. Vollenweider-type models) provides insights into the lake P management and a simple method for large-scale assessments of P in lakes. One of the basic problems in the mass balance modeling of P in lakes is the removal of P from the lake water column by settling. A fraction of the incoming P into the lake from the watershed is associated with fast-settling particles (e.g. sediment particles) that result in the removal of that fraction of P quickly at the lake entrance. However, existing models considering a constant fraction of fast-settling TP for all lakes are shown to result in overestimation of the retention of P in lakes with short hydraulic residence time. In this study, we combine a hypothesis of the fast- and slow-settling P fractions into the steady-state mass balance models of P retention in lakes. We use a large database of lakes to calibrate the model and evaluate the hypothesis. The results of this work can be used for the improvement of the prediction power of P retention models in lakes and help to better understand the processes of P cycling in lakes.</p>


2017 ◽  
Author(s):  
Selene B. González-Morales ◽  
Alex Mayer ◽  
Neptalí Ramírez-Marcial

Abstract. The physical aspects and knowledge of soil erosion in six communities in rural Chiapas, Mexico were assessed. Average erosion rates estimated with the RUSLE model ranged from 200 to 1,200 ha−1 yr−1. Most erosion rates are relatively high due to steep slopes, sandy soils and bare land cover. The lowest rates occur where corn is cultivated for much of the year and slopes are relatively low. The results of a knowledge, attitudes and practices (KAP) survey showed that two-thirds of respondents believed that the major cause of soil erosion was hurricanes or rainfall and only 14 % of respondents identified human activities as causes of erosion. Forty-two percent of respondents indicated that the responsibility for solving soil erosion problems lies with government, as opposed to 26 % indicating that the community is responsible. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently applying reforestation practices and another one-third indicated that they were not following any conservation practices. The KAP results were used to assess the overall level of knowledge and interest in soil erosion problems and their solutions by compiling negative responses. The community of Barrio Vicente Guerrero may be most vulnerable to soil erosion, since it had the highest average negative response and the second highest soil erosion rate. However, Poblado Cambil had the highest estimated soil erosion rate and a relatively low average negative response rate, suggesting that soil conservation efforts should be prioritized for this community. We conclude that as long as the economic and productive needs of the communities are not solved simultaneously, the risk of soil erosion will increase in the future, which threatens the survival of these communities.


2015 ◽  
Vol 15 (10) ◽  
pp. 5415-5428 ◽  
Author(s):  
R. Kumar ◽  
M. C. Barth ◽  
V. S. Nair ◽  
G. G. Pfister ◽  
S. Suresh Babu ◽  
...  

Abstract. This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m−3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.


Sign in / Sign up

Export Citation Format

Share Document