scholarly journals Influence of topography and human activity on apparent in situ <sup>10</sup>Be-derived erosion rates in Yunnan, SW China

2016 ◽  
Vol 4 (4) ◽  
pp. 819-830 ◽  
Author(s):  
Amanda H. Schmidt ◽  
Thomas B. Neilson ◽  
Paul R. Bierman ◽  
Dylan H. Rood ◽  
William B. Ouimet ◽  
...  

Abstract. In order to understand better if and where erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12 to 209 mm kyr−1 with an area-weighted mean of 117 ± 49 mm kyr−1 (1 standard deviation) and median of 74 mm kyr−1. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosion rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that, in some small watersheds with high rates and intensity of agricultural land use that we sampled, tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.

2016 ◽  
Author(s):  
Amanda H. Schmidt ◽  
Thomas B. Neilson ◽  
Paul R. Bierman ◽  
Dylan H. Rood ◽  
William B. Ouimet ◽  
...  

Abstract. In order to understand better if and where long-term erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12–209 mm/kyr with an area-weighted mean of 117 ± 49 mm/kyr (1 standard deviation) and median of 74 mm/kyr. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosions rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that in some small watersheds we sampled, those with high rates and intensity of agricultural land use, that tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.


2021 ◽  
Author(s):  
Audrey Jolivot ◽  
Valentine Lebourgeois ◽  
Mael Ameline ◽  
Valérie Andriamanga ◽  
Beatriz Bellón ◽  
...  

Abstract. The availability of crop type reference datasets for satellite image classification is very limited for complex agricultural systems as observed in developing and emerging countries. Indeed, agricultural land use is very dynamic, agricultural census are often poorly georeferenced, and crop types are difficult to photo-interpret directly from satellite imagery. In this paper, we present nine datasets collected in a standardized manner between 2013 and 2020 in seven tropical and subtropical countries within the framework of the international JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative. These quality-controlled datasets are distinguished by in situ data collected at field scale by local experts, with precise geographic coordinates, and following a common protocol. Altogether, the datasets completed 27 074 polygons (20 257 crop and 6 817 non-crop) documented by detailed keywords. These datasets can be used to produce and validate agricultural land use maps in the tropics, but also, to assess the performances and the robustness of classification methods of cropland and crop types/practices in a large range of tropical farming systems. The dataset is available at https://doi.org/10.18167/DVN1/P7OLAP.


2019 ◽  
Vol 29 (6) ◽  
pp. 909-921
Author(s):  
Yucui Zhang ◽  
Yongqing Qi ◽  
Yanjun Shen ◽  
Hongying Wang ◽  
Xuepeng Pan

2021 ◽  
Vol 13 (12) ◽  
pp. 5951-5967
Author(s):  
Audrey Jolivot ◽  
Valentine Lebourgeois ◽  
Louise Leroux ◽  
Mael Ameline ◽  
Valérie Andriamanga ◽  
...  

Abstract. The availability of crop type reference datasets for satellite image classification is very limited for complex agricultural systems as observed in developing and emerging countries. Indeed, agricultural land use is very dynamic, agricultural censuses are often poorly georeferenced and crop types are difficult to interpret directly from satellite imagery. In this paper, we present a database made of 24 datasets collected in a standardized manner over nine sites within the framework of the international JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative; the sites were spread over seven countries of the tropical belt, and the number of data collection years depended on the site (from 1 to 7 years between 2013 and 2020). These quality-controlled datasets are distinguished by in situ data collected at the field scale by local experts, with precise geographic coordinates, and following a common protocol. Altogether, the datasets completed 27 074 polygons (20 257 crops and 6817 noncrops, ranging from 748 plots in 2013 (one site visited) to 5515 in 2015 (six sites visited)) documented by detailed keywords. These datasets can be used to produce and validate agricultural land use maps in the tropics. They can also be used to assess the performances and robustness of classification methods of cropland and crop types/practices in a large range of tropical farming systems. The dataset is available at https://doi.org/10.18167/DVN1/P7OLAP (Jolivot et al., 2021).


2016 ◽  
Vol 11 (2) ◽  
pp. 132-142
Author(s):  
M. R. Musaev ◽  
D. A. Shapovalov ◽  
P. V. Klyushin ◽  
S. V. Savinova

1979 ◽  
Vol 6 (4) ◽  
pp. 273-276 ◽  
Author(s):  
Gerald G. Garland

Land erosion in wilderness, conservation, and recreational, areas may be accelerated by certain non-agricultural land management practices. Examples from the Natal Drakensberg are used to demonstrate how certain types of land modification—such as burning, the construction of unpaved access roads, and the creation of paths and tracks—may result in rapid acceleration of erosion rates.


Sign in / Sign up

Export Citation Format

Share Document