scholarly journals Method for testing the calibration of acceleration and pressure gauges installed at the ocean bottom

Author(s):  
Mikhail Nosov ◽  
Viacheslav Karpov ◽  
Sergey Kolesov ◽  
Kirill Sementsov ◽  
Hiroyuki Matsumoto ◽  
...  

Abstract. A method is proposed for testing pressure gauges and z-accelerometers, installed in ocean-bottom observatories. The method is based on the linear relationship between variations of the ocean-bottom pressure and the z-acceleration, observed during seismic movements of the bottom within the frequency band of "forced oscillations". Calculation of the boundaries of this frequency band is based on the ocean depth at the observatory site making use of explicit formulae. In the case of correct calibration of the gauges calculation of the ratios of power spectra of bottom pressure variations and the z-accleration within the band of "forced oscillations" yields constant values equal to the square ratio of the total mean pressure and the gravity acceleration. The conditions for application of the proposed method are formulated.

2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


Author(s):  
Hiroaki Tsushima ◽  
Ryota Hino ◽  
Hiromi Fujimoto ◽  
Yuichiro Tanioka ◽  
Fumihiko Imamura

2019 ◽  
Vol 46 (1) ◽  
pp. 303-310 ◽  
Author(s):  
Tomoya Muramoto ◽  
Yoshihiro Ito ◽  
Daisuke Inazu ◽  
Laura M. Wallace ◽  
Ryota Hino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document