scholarly journals In-flight calibration of double-probe electric field measurements on Cluster

2014 ◽  
Vol 3 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Y. V. Khotyaintsev ◽  
P.-A. Lindqvist ◽  
C. M. Cully ◽  
A. I. Eriksson ◽  
M. André

Abstract. Double-probe electric field instrument with long wire booms is one of the most popular techniques for in situ measurement of electric fields in plasmas on spinning spacecraft platforms, which have been employed on a large number of space missions. Here we present an overview of the calibration procedure used for the Electric Field and Wave (EFW) instrument on Cluster, which involves spin fits of the data and correction of several offsets. We also describe the procedure for the offset determination and present results for the long-term evolution of the offsets.

Author(s):  
Y. V. Khotyaintsev ◽  
P.-A. Lindqvist ◽  
C. M. Cully ◽  
A. I. Eriksson ◽  
M. André

Abstract. Double-probe electric field instrument with long wire booms is one of the most popular techniques for in situ measurement of DC and AC electric fields in plasmas on spinning spacecraft platforms, which have been employed on a large number of space missions. Here we present an overview of the calibration procedure used for the EFW instrument on Cluster, which involves spin fits of the data and correction of several offsets. We also describe the procedure for the offset determination and present results for the long-term evolution of the offsets.


2006 ◽  
Vol 24 (1) ◽  
pp. 275-289 ◽  
Author(s):  
A. I. Eriksson ◽  
M. André ◽  
B. Klecker ◽  
H. Laakso ◽  
P.-A. Lindqvist ◽  
...  

Abstract. The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW) and an electron drift instrument (EDI). We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV) below the spacecraft potential (in volts). We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.


2020 ◽  
Vol 216 (8) ◽  
Author(s):  
T. Karlsson ◽  
Y. Kasaba ◽  
J.-E. Wahlund ◽  
P. Henri ◽  
L. Bylander ◽  
...  

AbstractThis paper describes the design of MEFISTO (Mercury Electric Field In-Situ Tool) and WPT (Wire Probe Antenna) electric field sensors for Plasma Wave Investigation (PWI) on the BepiColombo Mio spacecraft (Mercury Magnetospheric Orbiter, MMO). The two sensors will enable the first observations of electric fields, plasma waves and radio waves in and around the Hermean magnetosphere and exosphere. MEFISTO and WPT are dipole antennas with 31.6 m tip-to-tip length. Each antenna element has a spherical probe at each end of the wire (15 m length). They are extended orthogonally in the spin plane of the spacecraft and enable measurements of the electric field in the frequency range of DC to 10 MHz by the connection to two sets of receivers, EWO for a lower frequency range and SORBET for higher frequencies. In the initial operations after the launch (20 Oct. 2018), we succeeded to confirm the health of both antennas and to release the launch lock of the WPT. After Mercury orbit insertion planned at the end of 2025, both sensors will be fully deployed and activate full operations of the PWI electric field measurements.


1998 ◽  
Vol 167 ◽  
pp. 119-122
Author(s):  
P. Foukal

AbstractMeasurements of plasma electric fields offer, in principle, a direct test for the presence of neutral sheets in prominences. Macroscopic electric field intensities of order 1–10 V cm−1 are an essential element of MHD models of prominences containing neutral sheets. These fields should be detectable with our electrograph techniques using the high Paschen-series lines in the NIR, and the 15–9 and 16–9 transitions of H I around 10.5 μ. We discuss the upper limits of 1 V cm−1 we have achieved so far, and their implication for our ability to distinguish prominence models of the ideal-MHD type (e.g., Kippenhahn-Schluter 1957), from those fundamentally different models (e.g., Kuperus and Tandberg-Hanssen 1967, Martens and Kuin 1989) in which neutral sheets play a central role.


2009 ◽  
Vol 27 (4) ◽  
pp. 1423-1430 ◽  
Author(s):  
M. Shimogawa ◽  
R. H. Holzworth

Abstract. We present results of electric field measurements made during the MASS rocket campaign in Andøya, Norway into noctilucent clouds (NLC) and polar mesospheric summer echoes (PMSE) on 3 August 2007. The instrument used high input-impedance preamps to measure vertical and horizontal electric fields. No large-amplitude geophysical electric fields were detected in the cloud layers, but significant levels of electric field fluctuations were measured. Within the cloud layer, the probe potentials relative to the rocket skin were driven negative by incident heavy charged aerosols. The amplitude of spikes caused by probe shadowing were also larger in the NLC/PMSE region. We describe a method for calculating positive ion conductivities using these shadowing spike amplitudes and the density of heavy charged aerosols.


Sign in / Sign up

Export Citation Format

Share Document